共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Toru Takagishi Yozo Naoi Nobuhiko Kuroki 《Journal of polymer science. Part A, Polymer chemistry》1979,17(7):1953-1961
The thermodynamic parameters for the interaction of the hydrophobic fluorescent probe, 2-p-toluidinylnaphthalene-6-sulfonate (TNS), and polycations that contain a piperidinium cation and various nonpolar pendant groups were calculated. Binding is exothermic and involves a positive entropy gain. The contribution of the entropy term to the free energy change tends to increase with increasing hydrophobicity of the polymers. The intensity of the fluorescence of TNS is enhanced when the probe binds to the polycations. The nature and phenomena of hydrophobic fluorescent probe binding with the polymers are discussed. 相似文献
3.
Hiroshi Kozuka Toru Takagishi Hiromitsu Hamano Nobuhiko Kuroki 《Journal of polymer science. Part A, Polymer chemistry》1985,23(4):1243-1254
2-Hydroxyethyl methacrylate (HEMA)-N-vinyl-2-pyrrolidone (VPy) copolymers of various compositions have been prepared. The copolymers obtained were examined for their ability to bind a homologous series of methyl orange derivatives, methyl orange, ethyl orange, propyl orange, and butyl orange, at 5, 15, 25, and 35°C, respectively, in an aqueous solution. The first binding constants and the thermodynamic parameters that accompanied the binding were evaluated. The binding ability of the copolymer for the small cosolute was enhanced with an increase of the HEMA content in the copolymer. Moreover, a bell-shaped curve appeared in the binding of butyl orange by the copolymers having higher HEMA residues when the first binding constant was plotted as a function of temperature, whereas no such phenomenon was detected for the copolymers with less HEMA content or for the less hydrophobic dye, methyl orange, ethyl orange, or propyl orange. This peculiar temperature dependence of the first binding constant shows that the enthalpy of the binding varies from a positive (unfavorable) value below ca. 15°C to a negative (favorable) one above this temperature. This behavior can be accounted for in terms of more hydrophobic effects involved in the binding process. 相似文献
4.
Toru Takagishi Toshitsugu Hosokawa Minoru Okada Hiroshi Kozuka 《Journal of polymer science. Part A, Polymer chemistry》1986,24(12):3423-3431
2-Diethylaminoethyl methacrylate (DEAEMA)–N-vinyl-2-pyrrolidone (VPy) copolymers of various compositions have been synthesized. The resultant copolymers were examined for their ability to bind methyl orange and its homologs, in particular butyl orange, at 5, 15, 25, and 35°C in aqueous solutions. The amount of binding of butyl orange is much higher with the copolymers than with polyvinylpyrrolidone or with 2-hydroxyethyl methacrylate–N-vinyl-2-pyrrolidone copolymers. Introduction of only 3% of the hydrophobic DEAEMA residue increases markedly the binding affinity toward the cosolute. Maximal binding is obtained at 15°C in the temperature range measured. This peculiar temperature dependence of the extent of binding is explicable on the basis of hydrophobic effects involved in this binding. The peculiar temperature dependence disappeared in aqueous solution of NaSCN which acts as a water-structure breaker: the extent of binding changes regularly with temperature. This is interpretable only in terms of reduction of hydrophobic contribution to the binding. With propyl orange, which is a less hydrophobic cosolute than butyl orange, the peculiarity of the binding was not detected. 相似文献
5.
6.
7.
Toru Takagishi Toshitsugu Hosokawa Yasumichi Hatanaka 《Journal of polymer science. Part A, Polymer chemistry》1989,27(1):1-13
The pH dependence of the interaction of poly(2-dimethylaminoethyl methacrylate) and copolymers of 2-dimethylaminoethyl methacrylate and N-vinyl-2-pyrrolidone with methyl orange, 2-p-toluidinylnaphthalene-6-sulfonate (TNS), and 1,6-diphenyl-1,3,5-hexatriene (DHT) was studied by equilibrium dialysis and fluorescence measurements at pH's 7–10. The first binding constant accompanying the binding of methyl orange and TNS by the polymers, in particular the homopolymer, shows a maximum around pH 8 and maximal fluorescence intensity of TNS is obtained around pH 8.5 in the presence of the polymers. To elucidate these observations the pH-induced conformational changes of the homopolymer were examined by potentiometric titration and viscosity measurements and the thermodynamic parameters that accompany the binding were calculated. The polymer was found to change from an extended coil at lower pH to a compact coil at higher pH. The electrostatic attraction between the sulfonate group of the small molecule and the protonated nitrogen atoms on the polymer is increased at lower pH and the hydrophobic interaction between the hydrophobic moieties of the polymer and the small molecule is enhanced at higher pH. The results obtained for the dye binding and fluorescence intensity were discussed in terms of the electrostatic and hydrophobic interactions. 相似文献
8.
Shinichi Kitamura Shigeru Matsumori Takashi Kuge 《Journal of inclusion phenomena and macrocyclic chemistry》1984,2(3-4):725-735
The interaction of 2-p-toluidinylnaphthalene-6-sulfonate (TNS) with amylose and its related compounds in aqueous solution has been studied by both steady-state and transient fluorescence measurements. The fluorescence of TNS aqueous solution was enhanced by the addition of amylose, -limit dextrin, and amylopectin. The fluorescence decay of TNS bound to these polysaccharides were well described as a sum of two-exponential functions. This suggests that there are two different microenvironments at the binding sites. The fluorescence lifetime of major component for TNS-amylose system agreed with that of major component for TNS--cyclodextrin system. The mean rotational relaxation time of TNS bound to amylose is similar to that of the segmental motion of amylose chain. Based on these results, a configurational model for TNS-amylose complex has been proposed. 相似文献
9.
Hiroshi Kozuka Toshitsugu Hosokawa Toru Takagishi 《Journal of polymer science. Part A, Polymer chemistry》1989,27(2):555-563
The temperature dependence of the binding of butyl orange by a homopolymer of 2-dimethylaminoethyl methacrylate (DMAEMA) and copolymers of DMAEMA and N-vinyl-2-pyrrolidone (VPy) has been examined at various pH's. The binding is very much dependent upon the temperature of the system, the pH of the binding medium, and the DMAEMA content in the polymer. In this case maximal binding is obtained at approximately 15–25° in the temperature range measured, although in most cases which have been examined, the degree of binding increases steadily with increasing temperature. This peculiar temperature dependence of the binding becomes more pronounced as the pH and the DMAEMA content are increased. The appearance of the peculiarity is discussed in terms of the pH-induced conformational changes of the polymer and the hydrophobicity of the polymer. 相似文献
10.
11.
Yong Jin Lim Sung Hoon Kim Hiromitsu Hamano Toru Takagishi Nobuhiko Kuroki 《Journal of polymer science. Part A, Polymer chemistry》1986,24(3):503-510
Powdered Nylon 66 was prepared as a model of amorphous polymers. The resultant powder polyamide was composed of only amorphous regions. The extent of uptake of the acid azo dyes, a homologous series of methyl orange derivatives, by the polymer was measured in an aqueous solution. The first binding constants and the thermodynamic parameters in the course of the binding were evaluated. The thermodynamic behaviors obtained are very similar to those of crosslinked polyvinylpyrrolidone. The favorable free energy of the binding is accompanied by an entropy gain and an exothermic enthalpy change. The shorter the alkyl chain of the dyes, the more negative is the enthalpy change and, hence, the smaller is the entropy change. The thermodynamic data for butyl orange showed that the binding process is athermal and is wholly an entropic effect. The binding of the dyes to the matrix is entropically favorable as a result of the operation of the hydrophobic effect. In addition, an electrostatic force is operative between the sulfonate group on the dyes and the terminal amino groups on the polyamide. 相似文献
12.
Toru Takagishi Hiroshi Kozuka Nobuhiko Kuroki 《Journal of polymer science. Part A, Polymer chemistry》1981,19(12):3237-3246
Polyion complexes of sodium poly(methacrylate) and piperidinium cationic polymers [I], which are insoluble in water and have an equal number of positive and negative charges, bind organic anions (methyl orange, ethyl orange, propyl orange, butyl orange, and pentyl orange) in aqueous solution. The strength of the binding is enhanced by an increase in the hydrophobicity of the polyion complex and the small cosolute. Moreover, strong cooperative interactions appear with increased uptake of the small molecule. Urea and an inorganic electrolyte (KCl) were examined for their effect on the binding, the amount of which is strongly suppressed by these additives. The significance of hydrophobic and electrostatic interactions which accompany the binding is described. 相似文献
13.
Toru Takagishi Yoshiro Nakata Nobuhiko Kuroki 《Journal of polymer science. Part A, Polymer chemistry》1974,12(4):807-816
The binding of methyl orange, ethyl orange, and propyl orange by polycations involving various apolar pendant groups such as methyl, ethyl, benzyl, or dodecylbenzyl groups has been examined quantitatively by an equilibrium dialysis method at 5, 15, 25, and 35°C. The first binding constants and the thermodynamic parameters in the course of the binding have been calculated. The favorable free energy of the binding is accompanied by an entropy gain and an exothermic enthalpy change. The shorter the alkyl chain of the dyes or the polymers, the more negative is the enthalpy change and hence the smaller is the entropy change. Furthermore, an increase in binding affinity can be created in the polycation upon introduction of hydrophobic groups. In particular, the binding ability of the polycation containing a dodecylbenzyl group for methyl orange is almost 300-fold that of bovine serum albumin. Therefore it is clear that hydrophobic interactions, as well as electrostatic ones, are involved in the binding. 相似文献
14.
The reduction of methyl viologen (MV2+) and 9,10-anthraquinone-2-sulfonate (AQS) by the benzopinacol anion in 50% (v/v) propan-2-ol/water was investigated spectroscopically. The rate constants for these reactions were found to be 12.9 ± 0.2 and 0.23 ± 0.01 M?1 s?1, respectively. © John Wiley & Sons, Inc. 相似文献
15.
Toru Takagishi Michihiro Shibano Yong Jin Lim 《Journal of polymer science. Part A, Polymer chemistry》1987,25(9):2585-2594
The ability of powdered Nylon 612 to bind methyl orange, ethyl orange, propyl orange, and butyl orange was investigated at 5, 15, 25 and 35°C in an aqueous solution. The amount of binding of the dye is much higher with this polyamide than with powdered Nylon 66 reported previously,1 although the former polymer has fewer amide end groups. The Van't Hoff plots of the first binding constant for the binding of butyl orange and propyl orange by powdered Nylon 612 exhibit a bell-shaped curve, whereas the plots for methyl orange and ethyl orange do not. Maximal binding occurs at approximately 15°C for propyl orange and at about 25°C for butyl orange. This is the first instance where the peculiar temperature dependence of the binding constant has been found in the binding of propyl orange, whose hydrophobicity is less than that of butyl orange. These tendencies can be accounted for in terms of increased hydrophobic of butyl orange. These tendencies can be accounted for in terms of increased hydrophobic domains in powdered Nylon 612 and enhanced hydrophobic contributions in the binding process. 相似文献
16.
Cyclobutylpyrimidine dimers (CPDs) are formed between adjacent pyrimidines in DNA when it absorbs ultraviolet light. CPDs can be directly repaired by DNA photolyase (PL) in the presence of visible light. How PL recognizes and binds its substrate is still not well understood. Fluorescent nucleic acid base analogues are powerful probes of DNA structure. We have used the fluorescent adenine analogue 6MAP, a pteridone, to probe the local double helical structure of the CPD substrate when bound by photolyase. Duplex melting temperatures were obtained by both UV-vis absorption and fluorescence spectroscopies to ascertain the effect of the probe and the CPD on DNA stability. Steady-state fluorescence measurements of 6MAP-containing single-stranded and doubled-stranded oligos with and without protein show that the local region around the CPD is significantly disrupted. 6MAP shows a different quenching pattern compared to 2-aminopurine, another important adenine analogue, although both probes show that the structure of the complementary strand opposing the 5'-side of the CPD lesion is more destacked than that opposing the 3'-side in substrate/protein complexes. We also show that 6MAP/CPD duplexes are substrates for PL. Vertical excitation energies and transition dipole moment directions for 6MAP were calculated using time-dependent density functional theory. Using these results, the F?rster resonance energy transfer efficiency between the individual adenine analogues and the oxidized flavin cofactor was calculated to account for the observed intensity pattern. These calculations suggest that energy transfer is highly efficient for the 6MAP probe and less so for the 2Ap probe. However, no experimental evidence for this process was observed in the steady-state emission spectra. 相似文献
17.
18.
Determination of ranitidine, nizatidine, and cimetidine by a sensitive fluorescent probe 总被引:1,自引:0,他引:1
A validated, simple, and sensitive fluorescence quenching method for the determination of ranitidine, nizatidine, and cimetidine in tablets and biological fluids is presented. This is the first single fluorescence method reported for the analysis of all three H(2) antagonists. The competitive reaction between the investigated drug and the palmatine probe for the occupancy of the cucurbit[7]uril (CB[7]) cavity was studied using spectrofluorometry. CB[7] was found to react with the probe to form a stable complex. The fluorescence intensity of the complex was also enhanced greatly. However, the addition of the drug dramatically quenched the fluorescence intensity of the complex. Accordingly, a new fluorescence quenching method for the determination of the studied drugs was established. The different experimental parameters affecting the fluorescence quenching intensity were studied carefully. At optimum reaction conditions, the rectilinear calibration graphs between the fluorescence quenching values (ΔF) and the medicament concentration were obtained in the concentration range of 0.04-1.9 μg mL(-1) for the investigated drugs. The limits of detection ranged from 0.013 to 0.030 μg mL(-1) at 495 nm using an excitation wavelength of 343 nm. The proposed method can be used for the determination of the three H(2) antagonists in raw materials, dosage forms and biological fluids. 相似文献
19.
The fluorescence of a series of copolymers of 2-naphthyl methacrylate (2-NM) and methyl methacrylate (MMA) with various contents of 2-NM (obtained in chloroform, carbon tetrachloride and acetonitrile) was investigated. A linear dependence between the ratio of the excimer to monomer emission intensities (ID/IM) and the diad fraction (fnn) of 2-NM monomer units was established. The relationship between ID/IM and fnn · In (In = the mean sequence length of 2-NM units) fits a logarithmic curve. The results indicate that the excimer emission is determined mainly by the nearest neighbour naphthalene-containing monomer units in the copolymer chain. The copolymers obtained in acetonitrile have higher values of ID/IM than those obtained in chloroform and carbon tetrachloride. This difference is due to the higher content of mm-triads in copolymers from acetonitrile, confirmed by 1H-NMR analysis of the samples of poly(methyl methacrylate) formed from copolymers of 2-NM and MMA. 相似文献