首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The boundary element method (BEM) is implemented for the simulation of three-dimensional transient flows of typical relevance to mixing. Creeping Newtonian and viscoelastic fluids of the Maxwell type are examined. A boundary-only formulation in the time domain is proposed for linear viscoelastic flows. Special emphasis is placed on cavity flows involving simple- and multiple-connected moving domains. The BEM becomes particularly suited in multiple-connected flows, where part of the boundary (stirrer or rotor) is moving, and the remaining outer part (cavity or barrel) is at rest. In this case, conventional methods, such as the finite element method (FEM), generally require remeshing or mesh refinement of the three-dimensional fluid volume as the flow evolves and the domain of computation changes with time. The BEM is shown to be much easier to implement since the kinematics of the elements bounding the fluid is known (imposed). It is found that, for simple cavity flow induced by a rotating vane at constant angular velocity, the tractions at the vane tip and cavity face exhibit non-linear periodic dynamical behavior with time for fluids obeying linear constitutive equations. © 1998 John Wiley & Sons, Ltd.  相似文献   

2.
The pattern of cross stream migration of neutrally buoyant particles in a pressure driven flow depends strongly on the properties of the suspending fluid. These migration effects have been studied by direct numerical simulation in planar flow. Shear thinning has a large effect when the inertia or elasticity is large, but only a small effect when they are small. At moderate Reynolds numbers, shear thinning causes particles to migrate away from the centerline, creating a particle-free zone in the core of the channel, which increases with the amount of shear thinning. In a viscoelastic fluid with shear thinning, particles migrate either toward the centerline or toward the walls, creating an annular particle-free zone at intermediate radii. The simulations also give rise to precise determination of slip velocity distributions in the various cases studied.  相似文献   

3.
A hybrid method for computing the flow of viscoelastic and second-order fluids is presented. It combines the features of the finite difference technique and the shooting method. The method is accurate because it uses central differences. Its convergence is at least superlinear. The method is applied to obtain the solutions to three problems of flow of Walters' B' fluid: (a) flow near a stagnation point, (b) flow over a stretching sheet and (c) flow near a rotating disk. Numerical results reveal some new characteristics of flows which are not easy to demonstrate using the perturbation technique.  相似文献   

4.
Accurately characterizing the forces acting on particles in fluids is of fundamental importance for understanding particle dynamics and binding kinetics. Conventional asymptotic solutions may lead to poor accuracy for neighboring particles. In this paper, we develop an accurate boundary integral method to calculate forces exerted on particles for a given velocity field. We focus our study on the fundamental two‐bead oscillating problem in an axisymmetric frame. The idea is to exploit a correspondence principle between the unsteady Stokes and linear viscoelasticity in the Fourier domain such that a unifying boundary integral formulation can be established for the resulting Brinkman equation. In addition to the dimension reduction vested in a boundary integral method, our formulation only requires the evaluation of single‐layer integrals, which can be carried out efficiently and accurately by a hybrid numerical integration scheme based on kernel decompositions. Comparison with known analytic solutions and existing asymptotic solutions confirms the uniform third‐order accuracy in space of our numerical scheme. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
A finite element formulation for the steady laminar flow of an incompressible fluid with microstructure has been developed. The particular fluids considered are commonly known as micropolar fluids, in which case suspended particulate microstructures are modelled by an ‘extended’ continuum formulation. The particle microspin is a new kinematic variable which is independent of the classical vorticity vector and thereby allows relative rotation between particles and the surrounding fluid. This formulation also gives rise to couple stresses in addition to classical force or traction stresses. The finite element formulation utilizes a variational approach and imposes conservation of mass through a penalty function. A general boundary condition for microspin has been incorporated whereby microspin at a solid boundary is constrained to be proportional to the fluid vorticity. The proportionality constant in this case can vary from zero to unity. Sample solutions are presented for fully developed flow through a straight tube and compared with an analytical solution. Results are also generated for flow through a constricted tube and compared with a Newtonian fluid solution.  相似文献   

6.
We present the results of some numerical experiments which were carried out in order to investigate the general characteristics of the algorithm described in Part I of this paper.  相似文献   

7.
This paper presents an algorithm for two-dimensional Steady viscoelastic flow Simulation in which the Solution of the momentum and continuity equations is decoupled from that of the constitutive equations. The governing equations are discretized by the finite element method, with 3 × 3 element subdivision for the stress field approximation. Non-consistent Streamline upwinding is also used. Results are given for flow through a converging channel and through an abrupt planar 4:1 contraction.  相似文献   

8.
In this paper, a Galerkin weighted residual finite element numerical solution method, with velocity material time derivative discretisation, is applied to solve for a classical fluid mechanics system of partial differential equations modelling two‐dimensional stationary incompressible Newtonian fluid flow. Classical examples of driven cavity laminar flow and laminar flow past a cylinder are presented. Numerical results are compared with data found in the literature. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
A technique combining the features of parameter differentiation and finite differences is presented to compute the flow of viscoelastic fluids. Two flow problems are considered: (i) three-dimensional flow near a stagnation point and (ii) axisymmetric flow due to stretching of a sheet. Both flows are characterized by a boundary value problem in which the order of the differential equation exceeds the number of boundary conditions. The exact numerical solutions are obtained using the technique described in the paper. Also, the first-order perturbation solutions (in terms of the viscoelastic fluid parameter) are derived. A comparison of the results shows that the perturbation method is inadequate in predicting some of the vital characteristic features of the flows, which can possibly be revealed only by the exact numerical solution.  相似文献   

10.
A mixed finite element formulation for viscoelastic flows is derived in this paper, in which the FIC (finite incremental calculus) pressure stabilization process and the DEVSS (discrete elastic viscous stress splitting) method using the Crank-Nicolson-based split are introduced within a general framework of the iterative version of the fractional step algorithm. The SU (streamline-upwind) method is particularly chosen to tackle the convective terms in constitutive equations of viscoelastic flows. Thanks to the proposed scheme the finite elements with equal low-order interpolation approximations for stress-velocity-pressure variables can be successfully used even for viscoelastic flows with high Weissenberg numbers. The XPP (extended Pom-Pom) constitutive model for describing viscoelastic behaviors is particularly integrated into the proposed scheme. The numerical results for the 4:1 sudden contraction flow problem demonstrate prominent stability, accuracy and convergence rate of the proposed scheme in both pressure and stress distributions over the flow domain within a wide range of the Weissenberg number, particularly the capability in reproducing the results, which can be used to explain the "die swell" phenomenon observed in the polymer injection molding process.  相似文献   

11.
This paper studies the Stokes flow of micro-polar fluids by peristaltic pumping through the cylindrical tube under the effect of the slip boundary condition. The motion of the wall is governed by the sinusoidal wave equation. The analytical and numerical solutions for the axial velocity, the micro-polar vector, the stream function, the pressure gradient, the friction force, and the mechanical efficiency are obtained by using the lubrication theory under the low Reynolds number and long wavelength approximations. The impacts of the emerging parameters, such as the coupling number, the micro-polar parameter, the slip parameter on pumping characteristics, the friction force, the velocity profile, the mechanical efficiency, and the trapping phenomenon are depicted graphically. The numerical results infer that large pressure is required for peristaltic pumping when the coupling number is large, while opposite behaviors are found for the micro-polar parameter and the slip parameter. The size of the trapped bolus reduces with the increase in the coupling number and the micro-polar parameter, whereas it blows up with the increase in the slip parameter.  相似文献   

12.
A discontinuity-capturing scheme of finite element method (FEM) is proposed. The unstructured-grid technique combined with a new type of adaptive mesh approach is developed for both compressible and incompressible unsteady flows, which exhibits the capability of capturing the shock waves and/or thin shear layers accurately in an unsteady viscous flow at high Reynolds number. In particular, a new testing variable, i.e., the disturbed kinetic energyE, is suggested and used in the adaptive mesh computation, which is universally applicable to the capturing of both shock waves and shear layers in the inviscid flow and viscous flow at high Reynolds number. Based on several calculated examples, this approach has been proved to be effective and efficient for the calculations of compressible and incompressible flows. The project supported by the National Natural Science Foundation of China (10125210), the Hundred-Talent Programme of the Chinese Academy of Sciences and the Innovation Project of the Chinese Academy of Sciences (KJCX-SW-L04, KJCX2-SW-L2)  相似文献   

13.
The fractional calculus approach in the constitutive relationship model of viscoelastic fluid is introduced. A generalized Maxwell model with the fractional calculus was considered. Exact solutions of some unsteady flows of a viscoelastic fluid between two parallel plates are obtained by using the theory of Laplace transform and Fourier transform for fractional calculus. The flows generated by impulsively started motions of one of the plates are examined. The flows generated by periodic oscillations of one of the plates are also studied.  相似文献   

14.
The purpose of this study is to analyze the density flow in adiabatic two-phase fluids through the characteristic finite element method. The fluids are assumed to be liquids. The equations of conservations of mass and momentum for the adiabatic flows and the Birch–Murnaghan equation of state are employed as the governing equations. The employed finite element method is a combination of the characteristic method and the implicit method. The governing equations are divided into two parts: the advection part and the non-advection part. The characteristic method is applied to the advection part. The Hermite interpolation function, which is based on the complete third-order polynomial interpolation using triangular finite element is employed for the interpolation of both velocity and density. Using the discontinuity conditions, an interface translocation method can be derived. The interface of the two flow densities are interpolated through the third-order spline function, using which the curvature of the interface can be directly computed. For the numerical study, the development of density flow over the Tokyo bay is presented. It is detected out that high density area is abruptly diffused over the whole area. According to the differences in the two densities, various flow patterns are computed.  相似文献   

15.
A standard Galerkin finite element penalty function method is used to approximate the solution of the three-dimensional Navier–Stokes equations for steady incompressible Newtonian entrance flow in a 90° curved tube (curvature ratio δ = 1/6) for a triple of Dean numbers (κ = 41, 122 and 204). The computational results for the intermediate Dean number (κ = 122) are compared with the results of laser–Doppler velocity measurements in an equivalent experimental model. For both the axial and secondary velocity components, fair agreement between the computational and experimental results is found.  相似文献   

16.
Exact solutions for an incompressible, viscoelastic, electrically conducting MHD aligned fluid are obtained for velocity components and temperature profiles. Lie Group method is applied to obtain the solution and the symmetries used are of translational type.The English text was polished by Keren Wang and Yunming Chen.  相似文献   

17.
A finite element algorithm is presented for simultaneous calculation of the steady state, axisymmetric flows and the crystal, melt/crystal and melt/ambient interface shapes in the Czochralski technique for crystal growth from the melt. The analysis is based on mixed Lagrangian finite element approximations to the velocity, temperature and pressure fields and isoparametric approximations to the interface shape. Galerkin's method is used to reduce the problem to a non-linear algebraic set, which is solved by Newton's method. Sample solutions are reported for the thermophysical properties appropriate for silicon, a low-Prandtl-number semiconductor, and for GGG, a high–Prandtl–number oxide material. The algorithm is capable of computing solutions for both materials at realistic values of the Grashof number, and the calculations are convergent with mesh refinement. Flow transitions and interface shapes are calculated as a function of increasing flow intensity and compared for the two material systems. The flow pattern near the melt/gas/crystal tri-junction has the asymptotic form predicted by an inertialess analysis assuming the meniscus and solidification interfaces are fixed.  相似文献   

18.
The two-dimensional forced convection stagnation-point flow and heat transfer of a viscoelastic second grade fluid obliquely impinging on an infinite plane wall is considered as an exact solution of the full partial differential equations. This oblique flow consists of an orthogonal stagnation-point flow to which a shear flow whose vorticity is fixed at infinity is added. The relative importance of these flows is measured by a parameter γ. The viscoelastic problem is reduced to two ordinary differential equations governed by the Weissenberg number We, two parameters α and β, the later being a free parameter β, introduced by Tooke and Blyth [A note on oblique stagnation-point flow, Physics of Fluids 20 (2008) 033101-1–3], and the Prandtl number Pr. The two cases when α=β and αβ are, respectively, considered. Physically the free parameter may be viewed as altering the structure of the shear flow component by varying the magnitude of the pressure gradient. It is found that the location of the separation point xs of the boundary layer moves continuously from the left to the right of the origin of the axes (xs<0).  相似文献   

19.
The unsteady flow of viscoelastic fluid with the fractional derivative Maxwell model (FDMM) in a channel is studied in this note. The exact solutions are obtained for an arbitrary pressure gradient by means of the finite Fourier cosine transform and the Laplace transform. Two special cases of pressure gradient are discussed. Some results given by the classical models with integer-order are included in this note.  相似文献   

20.
The numerical computation of viscoelastic fluid flows with differential constitutive equations presents various difficulties. The first one lies in the numerical convergence of the complex numerical scheme solving the non-linear set of equations. Due to the hybrid type of these equations (elliptic and hyperbolic), geometrical singularities such as reentrant corner or die induce stress singularities and hence numerical problems. Another difficulty is the choice of an appropriate constitutive equation and the determination of rheological constants. In this paper, a quasi-Newton method is developed for a fluid obeying a multi-mode Phan-Thien and Tanner constitutive equation. A confined convergent geometry followed by the extrudate swell has been considered. Numerical results obtained for two-dimensional or axisymmetric flows are compared to experimental results (birefringence patterns or extrudate swell) for a linear low density polyethylene (LLDPE) and a low density polyethylene (LDPE).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号