首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Various 11‐chloro‐5‐methyl‐5H‐indolo[2,3‐b]quinolines (neocryptolepines) with different substituents on the quinoline ring, key intermediates for antimalaria agents, are prepared from the substituted N‐methylanilines, easily accessible by the N‐methylation of anilines, and indole‐3‐carboxylate as a counterpart. This protocol is benign in terms of the reduced number of steps to reach the target, compared with the known method using anilines, and easy product purification. Alternatively, their 6‐methyl congener is prepared by N‐methylation of the indole moiety of 2‐arylaminoindole‐3‐carboxylate followed by successive cyclization and chlorination. 11‐Chloroneocryptolepines are found more reactive than their 6‐methyl congener in the nucleophilic substitution at the C11 position.  相似文献   

2.
The reaction of homophthalic anhydride and N‐(1‐methyl‐1H‐pyrrol‐2‐yl‐methylidene)‐benzylamine in boiling benzene afforded as a main product the expected substituted trans‐1,2,3,4‐tetrahydroisoquinoline‐4‐carboxylic acid 5 . The carboxylic group of 5 was transformed in four steps into cyclic amino‐methyl groups yielding numerous new tetrahydroisoquinolinones 11a‐j incorporating a given fragment of pharmacological interest. Reduction of 11a‐j was studied.  相似文献   

3.
The imidoylnitrene 8 , N‐methyl‐C‐phenylimidoylnitrene, has been generated by laser photolysis of 1‐methyl‐5‐phenyltetrazole 6 at 5 K and characterized by its ESR spectrum (|D/hc|=0.9602, |E/hc|=0.0144 cm?1). In addition, the triplet excited states of 6 and of 2‐methyl‐5‐phenyltetrazole 11 were also observed by ESR spectroscopy in the 5 K matrices ( 6 : |D/hc|=0.123 cm?1, E/hc=0.0065 cm?1, 11 : |D/hc|=0.126 cm?1, |E/hc|=0.0056 cm?1). The imidoylnitrene 8 is unstable both thermally (disappearing at 80 K) and photochemically (disappearing on continued irradiation at 266 nm). Methyl(phenyl)carbodiimide is the end product of photolysis.  相似文献   

4.
The 2,3‐disubstituted 6‐fluoro‐7‐(4‐methyl‐1‐piperazinyl)‐quinoxalines ( 3–11 ) were synthesized for bioassay via reaction of 1.2‐diamino‐4‐fluoro‐5‐(4‐methyl‐1‐piperazinyl)benzene (2) with the appropriate 1,2‐dicarbonyl compounds. However, none of the tested compounds 3–11 showed significant in vitro activ ity against E. coli ATCC11229, S. aureus ATCC6538 and C.albicans SATCC10231.  相似文献   

5.
Relative rate coefficients for the reactions of OH with 3‐methyl‐2‐cyclohexen‐1‐one and 3,5,5‐trimethyl‐2‐cyclohexen‐1‐one have been determined at 298 K and atmospheric pressure by the relative rate technique. OH radicals were generated by the photolysis of methyl nitrite in synthetic air mixtures containing ppm levels of nitric oxide together with the test and reference substrates. The concentrations of the test and reference substrates were followed by gas chromatography. Based on the value k(OH + cyclohexene) = (6.77 ± 1.35) × 10?11 cm3 molecule?1 s?1, rate coefficients for k(OH + 3‐methyl‐2‐cyclohexen‐1‐one) = (3.1 ± 1.0) × 10?11 and k(OH + 3,5,5‐trimethyl‐2‐cyclohexen‐1‐one) = (2.4 ± 0.7) × 10?11 cm3 molecule?1 s?1 were determined. To test the system we also measured k(OH + isoprene) = (1.11 ± 0.23) × 10?10 cm3 molecule?1 s?1, relative to the value k(OH + (E)‐2‐butene) = (6.4 ± 1.28) × 10?11 cm3 molecule?1 s?1. The results are discussed in terms of structure–activity relationships, and the reactivities of cyclic ketones formed in the photo‐oxidation of monoterpene are estimated. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 34: 7–11, 2002  相似文献   

6.
The reaction of S‐methylisothiosemicarbazide hydroiodide (=S‐methyl hydrazinecarboximidothioate hydroiodide; 1 ), prepared from thiosemicarbazide by treatment with MeI in EtOH, and aryl isoselenocyanates 5 in CH2Cl2 affords 3H‐1,2,4‐triazole‐3‐selone derivatives 7 in good yield (Scheme 2, Table 1). During attempted crystallization, these products undergo an oxidative dimerization to give the corresponding bis(4H‐1,2,4‐triazol‐3‐yl) diselenides 11 (Scheme 3). The structure of 11a was established by X‐ray crystallography.  相似文献   

7.
The 2,3‐dihydro‐7‐methyl‐1H,5H‐pyrido[3,2,1‐ij]quinoline‐1,5‐dione derivatives 9 and 10 were prepared from 3‐(5,7‐dimethoxy‐4‐methyl‐2‐oxo‐2H‐quinolin‐1‐yl)propionitrile ( 6 ). Cyclodehydration of the amide 8 gave 1,2‐dihydro‐7,9‐dimethoxy‐6‐methylpyimido[1,2‐a]quinolin‐3‐one ( 11 ).  相似文献   

8.
Synthesis of Two Naturally Occurring 10-Membered Ring Lactones: (±)-Phoracantholide J and I Two 10-membered ring lactones 7 and 11 from the metasternal secretion of the eucalypt longicorn Phoracantha synonyma have been synthesized by the following method. Reaction of the dilithium derivative of 4-pentynoic acid ( 3 ) with 4-tetrahydropyranyloxy-1-pentylbromide ( 2 ), followed by removal of the protecting group and by esterification with diazomethane, gave methyl 9-hydroxy-4-decynoate ( 4 ; s. Scheme 1). Partial hydrogenation of the triple bond in 4 with Lindlar palladium catalyst, followed by saponification lead to cis-9-hydroxy-4-decenoic acid ( 6 ). The 9-hydroxydecanoic acid ( 9 ) was synthesized by addition of methyl magnesium iodide to methyl 8-formyloctanoate ( 8 ) followed by saponification (s. Scheme 2). The hydroxy acids 6 and 9 were converted into the S-(2-pyridyl) thioesters and cyclized in dilute benzene solution under the influence of silver ions to yield (±)-phoracantholide J ( 7 ) and I ( 11 ) in 74 and 71% yield, respectively.  相似文献   

9.
The reaction of the methyl (dialkoxyphosphinyl)‐dithioformates (= methyl dialkoxyphosphinecarbodithioate 1‐oxides) 10 with CH2N2 at − 65° in THF yielded cycloadducts which eliminated N2 between − 40 and − 35° to give the corresponding phosphonodithioformate S‐methanides ( =methylenesulfonium (dialkoxyoxidophosphino)(methylthio)methylides) 11 (Scheme 3). These reactive 1,3‐dipoles were intercepted by aromatic thioketones to yield 1,3‐dithiolanes. Whereas the reaction with thiobenzophenone ( 12b ) led to the sterically more congested isomers 15 regioselectively, a mixture of both regioisomers was obtained with 9H‐fluorene‐9‐thione ( 12a ). Trapping of 11 with phosphono‐ and sulfonodithioformates led exclusively to the sterically less hindered 1,3‐dithiolanes 16 and 18 , respectively (Scheme 4). In addition, reactive CC dipolarophiles such as ethenetetracarbonitrile, maleic anhydride, and N‐phenylmaleimide as well as the NN dipolarophile dimethyl diazenedicarboxylate were shown to be efficient interceptors of 11 (Scheme 5).  相似文献   

10.
Complex formation between N‐butylboronic acid and D ‐(+)‐glucose, D ‐(+)‐mannose, methyl‐α‐D ‐glucopyranoside, methyl‐β‐D ‐galactopyranoside and methyl α‐D ‐mannopyranoside under neutral conditions was investigated by 1H, 13C and 11B NMR spectroscopy and gas chromatography–mass spectrometry (GC–MS) D ‐(+)‐Glucose and D ‐(+)‐mannose formed complexes where the boronates are attached to the 1,2:4,6‐ and 2,3:5,6‐positions of the furanose forms, respectively. On the other hand, the boronic acid binds to the 4,6‐positions of the two methyl derivatives of glucose and galactose. Methyl α‐D ‐mannopyranoside binds two boronates at the 2,3:4,6‐positions. 11B NMR was used to show the ring size of the complexed sugars and the boronate. GC–MS confirmed the assignments. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
The 5,5‐dimethylpyrazolidin‐3‐one ( 4 ), prepared from ethyl 3‐methylbut‐2‐enoate ( 3 ) and hydrazine hydrate, was treated with various substituted benzaldehydes 5a – i to give the corresponding (1Z)‐1‐(arylmethylidene)‐5,5‐dimethyl‐3‐oxopyrazolidin‐1‐ium‐2‐ide azomethine imines 6a – i . The 1,3‐dipolar cycloaddition reactions of azomethine imines 6a – h with dimethyl acetylenedicarboxylate (=dimethyl but‐2‐ynedioate; 7 ) afforded the corresponding dimethyl pyrazolo[1,2‐a]pyrazoledicarboxylates 8a – h , while by cycloaddition of 6 with methyl propiolate (=methyl prop‐2‐ynoate; 9 ), regioisomeric methyl pyrazolo[1,2‐a]pyrazolemonocarboxylates 10 and 11 were obtained. The regioselectivity of cycloadditions of azomethine imines 6a – i with methyl propiolate ( 9 ) was influenced by the substituents on the aryl residue. Thus, azomethine imines 6a – e derived from benzaldehydes 5a – e with a single substituent or without a substituent at the ortho‐positions in the aryl residue, led to mixtures of regioisomers 10a – e and 11a – e . Azomethine imines 6f – i derived from 2,6‐disubstituted benzaldehydes 5f – i gave single regioisomers 10f – i .  相似文献   

12.
The molecules of methyl 3‐(2‐nitrophenylhydrazono)butanoate, C11H13N3O4, (I), and methyl 3‐(2,4‐dinitrophenylhydrazono)butanoate, C11H12N4O6, (II), both prepared from methyl 3‐oxobutanoate and the corresponding nitrophenylhydrazine, exhibit polarized molecular electronic structures; in each of (I) and (II), the molecules are linked into chains by a single C—H...O hydrogen bond. The molecules of 5‐hydroxy‐3‐methyl‐1‐phenyl‐1H‐pyrazole, C10H10N2O, (III), prepared by the reaction of methyl 3‐oxobutanoate and phenylhydrazine, are linked into chains by a single O—H...N hydrogen bond. The reaction between methyl 3‐oxobutanoate and 3‐nitrophenylhydrazine yields 5‐hydroxy‐3‐methyl‐1‐(3‐nitrophenyl)‐1H‐pyrazole, (IV), which when crystallized from acetone yields 4‐isopropylidene‐3‐methyl‐1‐(3‐nitrophenyl)‐1H‐pyrazol‐5(4H)‐one, C13H13N3O3, (V).  相似文献   

13.
The geometry of racemic methyl 2‐(4‐methyl‐2‐thio­xo‐2,3‐di­hydro­thia­zol‐3‐yl­oxy)­propanoate, C8H11NO3S2, (I), is characterized by a distorted heterocyclic five‐membered ring and an enantiomorphic N‐alkoxy substituent, which is inclined at an angle of −68.8° to the thia­zole­thione plane in (M)‐(I). The unit cell consists of a 1:1 ratio of R,P‐ and S,M‐configured mol­ecules of (I). The combination of a P configuration at the N—O axis and an R configuration at the asymmetric propanoate Cβ atom on one side, and an S,M configuration on the other side, is considered to originate from steric interactions. The largest substituent at the asymmetric propanoate Cβ atom, i.e. the methoxycarbonyl group, resides above the methyl substituent; the medium‐sized propanoate γ‐methyl substituent points in the opposite direction with respect to the N—O bond, whereas the H atom is located above the C=S double bond of the thiazolethione subunit.  相似文献   

14.
Heating ortho‐nitro‐anilides 1 – 3 and 2‐methyl‐N‐(3‐nitropyridin‐2‐yl)propanamide ( 5 ) with 4 equiv. of a phosphine led to the 2‐substituted benzimidazoles 6 – 8 and to the imidazo[4,5‐b]pyridine 10 , respectively, in yields between 45 and 85%. Heating 1 with (EtO)3P effected cyclisation and N‐ethylation, leading to the 1‐ethylbenzimidazole 6b . The slow cyclisation of the N‐pivaloylnitroaniline 2b allowed isolation of the intermediate phosphine imide 11 that slowly transformed into the 1H‐benzimidazole 7b . The structure of 11 was established by crystal‐structure analysis. While the N‐methylated ortho‐nitroacetanilide 3 cyclised to the 1,2‐dimethyl‐1H‐benzimidazole ( 8 ), the 2‐methylpropananilide 4 was transformed into 1‐methyl‐3‐(1‐methylethyl)‐2H‐benzimidazol‐2‐one ( 9 ).  相似文献   

15.
This article describes detailed structure‐property relationships of 5 regioselectively methylated celluloses and 10 diblock cellulose derivatives with regioselective functionalization patterns: methyl 2,3,6‐tri‐O‐ ( 1 , 236MC), methyl 2,3‐di‐O‐ ( 2 , 23MC), methyl 2,6‐di‐O‐ ( 3 , 26MC), methyl 3‐O‐ ( 4 , 3MC), methyl 6‐O‐methyl‐cellulosides ( 5 , 6MC), methyl β‐D‐glucopyranosyl‐(1→4)‐2,3,6‐tri‐O‐methyl‐ ( 6 , G‐236MC), methyl β‐D‐glucopyranosyl‐(1→4)‐2,3‐di‐O‐methyl‐ ( 7 , G‐23MC), methyl β‐D‐glucopyranosyl‐(1→4)‐2,6‐di‐O‐methyl‐ ( 8 , G‐26MC), methyl β‐D‐glucopyranosyl‐(1→4)‐3‐O‐methyl‐ ( 9 , G‐3MC), methyl β‐D‐glucopyranosyl‐(1→4)‐6‐O‐methyl‐ ( 10 , G‐6MC), methyl β‐D‐glucopyranosyl‐(1→4)‐β‐D‐glucopyranosyl‐(1→4)‐2,3,6‐tri‐O‐methyl‐ ( 11 , GG‐236MC), methyl β‐D‐glucopyranosyl‐(1→4)‐β‐D‐glucopyranosyl‐(1→4)‐2,3‐di‐O‐methyl‐ ( 12 , GG‐23MC), methyl β‐D‐glucopy‐ranosyl‐(1→4)‐β‐D‐glucopyranosyl‐(1→4)‐2,6‐di‐O‐methyl‐ ( 13 , GG‐26MC), methyl β‐D‐glucopyranosyl‐(1→4)‐β‐D‐glucopyranosyl‐(1→4)‐3‐O‐methyl‐ ( 14 , GG‐3MC), and methyl β‐D‐glucopyranosyl‐(1→4)‐β‐D‐glucopyranosyl‐(1→4)‐6‐O‐methyl‐cellulosides ( 15 , GG‐6MC). Surface tension, differential scanning calorimetry, fluorescence, and dynamic light scattering measurements of aqueous solutions of compounds 1 – 15 revealed that there was no relationship between aggregation behaviors and gel formation, gelation occurred only when the hydrophobic environments formed by hydrophobic interactions between the sequences of 2,3,6‐tri‐O‐methyl‐glucopyranosyl units upon heating. The diblock structure consisting of cellobiosyl block and approx. ten 2,3,6‐tri‐O‐methyl‐glucopyranosyl units was of crucial importance for thermoreversible gelation of methylcellulose. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1539–1546, 2011  相似文献   

16.
A three-component condensation of 2-naphthylamine, aromatic aldehydes, and methyl 2,2-dimethyl-4,6-dioxocyclohexanecarboxylate afforded methyl (cis,trans)-12-aryl-9,9-dimethyl-11-oxo-7,8,9,10,11,12-hexahydrobenzo[a]acridine-10-carboxylates. Spectral luminescence and nonlinear optical properties of compounds obtained were investigated.  相似文献   

17.
Select dilithiated ortho‐toluic acids were prepared in excess lithium diisopropylamide and condensed with methyl 2‐(aminosulfonyl)benzoate followed by a twofold cyclization of intermediates to afford benzoisothiazolo[1,2‐b][1,2]isoquinolin‐11‐one‐1,1‐dioxides, a new fused‐ring heterocyclic system.  相似文献   

18.
The ceric ammonium nitrate‐catalyzed synthesis of (E)‐5‐amino‐N‐(3‐methyl‐5‐styrylisoxazol‐4‐yl)‐2‐arylchromeno[4,3,2‐de][1,6]napthyridin‐4‐carboxamides 5 was simply achieved upon the one‐pot four‐component reaction of isoxazolyl cyanoacetamide 1 with malononitrile 2 , 2‐hydroxy acetophenone 3 , and aromatic aldehydes 4 in ethanol. Compounds 5 on heating with acetic anhydride underwent tandem N‐acetylation and cyclocondensation involving intramolecular cyclization to afford the title compounds (E)‐11‐methyl‐12‐(3‐methyl‐5‐styrylisoxazol‐4‐yl)‐2‐arylchromeno[4,3,2‐de][1,6]napthyridin‐13(12H)‐ones 6 in good yields. The chemical structures have been confirmed by analytical and spectral analyses.  相似文献   

19.
Two novel methyl‐substituted arachidonic acid derivatives were prepared in an enantioselective manner from commercially available chiral building blocks, and were found to be excellent templates for the development of (13S)‐methyl‐substituted anandamide analogues. One of the compounds synthesized, namely, (13S,5Z,8Z,11Z,14Z)‐13‐methyl‐eicosa‐5,8,11,14‐tetraenoic acid N‐(2‐hydroxyethyl)amide, is an endocannabinoid analogue with remarkably high affinity for the CB1 cannabinoid receptor.  相似文献   

20.
The title compounds, 2‐{[tris­(hydroxy­methyl)­methyl]­amino­methyl­ene}cyclo­hexa‐3,5‐dien‐1(2H)‐one, C11H15NO4, (I), 6‐hydroxy‐2‐{[tris­(hydroxy­methyl)­methyl]­amino­methyl­ene}­cyclo­hexa‐3,5‐dien‐1(2H)‐one, C11H15NO5, (II), and 6‐methoxy‐2‐{[tris­(hydroxy­methyl)­methyl]­amino­methyl­ene}­cyclo­hexa‐3,5‐dien‐1(2H)‐one, C12H17NO5, (III), adopt the keto–amine tautomeric form, with the formal hydroxy H atom located on the N atom, and the NH group and oxo O atom display a strong intramolecular N—H⋯O hydrogen bond. The N—H⋯O hydrogen‐bonded rings are almost planar and coupled with the cyclo­hexa­diene rings. The carbonyl O atoms accept two other H atoms from the alcohol groups of adjacent mol­ecules in (I), and one from the alcohol and one from the phenol group in (II), but from only one alcohol H atom in (III).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号