首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Complexes of Rhenium with Planar ReN2S2 Rings. Syntheses and Crystal Structures of AsPh4[ReCl4(N2S2)] and PPh4[ReBr4(N2S2)] The complex [ReCl4(N2S2)]? can be obtained as PPh4 or AsPh4 salt by the action of S(NSiMe3)2 and of diphenylacetylene, respectively, on the chlorothionitrene complex [ReCl4(NSCl)2]?. Another method of synthesis is the reaction of [ReCl3(NSCl)2(POCl3)] with SbPh3. [ReBr3(N2S2)]2 is obtained from excess Me3SiBr and [ReCl3(NSCl)2(POCl3)]. The anionic complex [ReBr4(N2S2)]? forms from either [ReCl4(NSCl)2]? or [ReCl4(N2S2)]? with Me3SiBr. All compounds are black, diamagnetic, and sensitive to moisture; the PPh4 and AsPh4 salts are soluble in CH2Cl2 and CH2Br2. The IR spectra are reported. The crystal structures of AsPh,4[ReCl4(N2S2)] and PPh4[ReBr4(N2S2)] were determined by X-ray diffraction. AsPh4[ReCl4(N2S2)]: space group P2/n, Z = 2, a = 1244.5, b = 1429.3, c = 791.1 pm, γ = 96.89° (1715 observed reflexions, R = 0.082). PPh4[ReBr4[ReBr4(N2S2)]: space group P21/n, Z = 4, a = 961.7, b = 1397.4, c = 2205.7 pm, β = 102.10° (1787 observed reflexions, R = 0.073). In both compounds the [ReX4(N2S2)]? anions have the same type of structure, the Re atoms forming part of planar ReN2S2 rings; the bond lengths are ReN 177 pm, NS 152 pm, and SS 259 for the chloro compound and ReN 184 pm, NS 153 pm, and SS 264 pm for the bromo compound. In AsPh4[ReCl4(N2S2)] the cations are stacked to form columns in the c-direction; in PPh4[ReBr4(N2S2)], there is considerable distortion form this packing principle.  相似文献   

2.
Synthesis, Crystal Structure, Vibrational Spectra, and Normal Coordinate Analysis of cis‐ and trans‐(n‐Bu4N)2[PtF2(ox)2] and (n‐Bu4N)2[PtF4(ox)] By treatment of trans‐(n‐Bu4N)2[PtCl2(ox)2] and (n‐Bu4N)2[PtCl4(ox)] with XeF2 in propylene carbonate cis‐ and trans‐(n‐Bu4N)2[PtF2(ox)2] ( 1 , 2 ) and (n‐Bu4N)2[PtF4(ox)] ( 3 ) are formed which have been isolated by ion exchange chromatography on diethylaminoethyl cellulose. The crystal structure of trans(n‐Bu4N)2[PtF2(ox)2] ( 2 ) (tetragonal, space group P42/n, a = 15.5489(9), b = 15.5489(9), c = 17.835(1)Å, Z = 4) und Cs2[PtF4(ox)] ( 3 ) (monoclinic, space group C2/m, a = 14.5261(7), b = 6.2719(4), c = 9.6966(9)Å, β = 90.216(8)°, Z = 4) reveal complex anions with nearly D2h and C2v point symmetry. The average bond lengths in the symmetrical coordinated axes are Pt—F = 1.93 ( 2 , 3 ) and Pt—O = 1.987 ( 2 ) and in the F—Pt—O′‐axes Pt—F = 1.957 and Pt—O′ = 1.977Å ( 3 ). The oxalato ligands are nearly planar with a maximum displacement of the ring atoms of 0.05 ( 2 ) und 0.01Å ( 3 ) to the calculated best planes. In the vibrational spectra the symmetric and antisymmetric PtF stretching vibrations are observed at 583 and 586 ( 2 ) and 576 and 568 cm—1 ( 3 ). The PtF modes appear at 565 and 562 ( 1 ) and 560 cm—1 ( 3 ). The PtO and PtO′ stretching vibrations are coupled with internal modes of the oxalato ligands and appear in the range of 400—800 cm—1. Based on the molecular parameters of the X‐ray determinations ( 2 , 3 ) and estimated data ( 1 ) the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constants are fd(PtF) = 3.55 ( 2 ) and 3.38 ( 3 ), fd(PtF) = 3.23 ( 1 ) and 3.20 ( 3 ), fd(PtO) = 2.65 ( 1 ) and 2.84 ( 2 ) and fd(PtO′) = 2.97 ( 1 ) and 3.00 mdyn/Å ( 3 ). Taking into account increments of the trans influence a good agreement between observed and calculated frequencies is achieved. The NMR shifts are δ(195Pt) = 8485 ( 1 ), 8597 ( 2 ) and 10048 ppm ( 3 ), δ(19F) = —350 ( 2 ) and —352 ( 3 ) and δ(19F) = —323 ( 1 ) and —326 ppm ( 3 ) with the coupling constants 1J(PtF) = 1784 ( 2 ) and 1864 ( 3 ) and 1J(PtF) = 1525 ( 1 ) and 1638 Hz ( 3 ).  相似文献   

3.
Crystal Structures, Vibrational Spectra, and Normal Coordinate Analysis of ( n -Bu4N)2[ReBr5(NCS)] and ( n -Bu4N)2[ReBr5(NCSe)] The X-ray structure determinations on single crystals of (n-Bu4N)2[ReBr5(NCS)] ( 1 ) (monoclinic, space group P21/n, a = 10.9860(9), b = 11.6860(7), c = 35.551(3) Å, β = 91.960(9)°, Z = 4) and (n-Bu4N)2[ReBr5(NCSe)] ( 2 ) (monoclinic, space group P21/n, a = 11.0208(15), b = 11.7418(16), c = 35.621(12) Å, β = 92.003(18)°, Z = 4) reveal that the thiocyanate and the selenocyanate group are bonded with the Re–N–C angle of 168.5° ( 1 ) and 169.9° ( 2 ). Based on the molecular parameters of the X-ray determinations the IR and Raman spectra have been assigned by normal coordinate analysis. The valence force constants fd(ReN) are 1.81 ( 1 ) and 1.75 mdyn/Å ( 2 ).  相似文献   

4.
Stericly Shielded Nitrido Complexes of Molybdenum and Tungsten. The Crystal Structures of [MoN(NPh2)3] and [W4N4(NPh2)6(OnC4H9)2] The reactions of MoNCl3 and WNCl3, respectively, with lithium diphenylamide in tetrahydrofurane produce the monomeric nitrido complexes MN(NPh2)3 with CN = 4 at the metal atoms. In the presence of lithium-n-butyl LiNPh2 and WNCl3 also form the tetrameric nitrido complex [W4N4(NPh2)6(OnC4H9)2] which contains WV and WVI. The compounds are characterized by their i.r. spectra, by X-ray structural analysis, and, partially, by 1H and 13C n.m.r. spectroscopy. MoN(NPh2)3: Space group P1 , Z = 2, 4060 observed independent reflexions, R = 0.031. Lattice dimensions at 20°C: a = 956.2(4) pm, b = 1 015.9(2) pm, c = 1 598.1(3) pm; α = 79.06(2)°, β = 85.67(3)°, γ = 82.57(3)°. The compound forms monomeric molecules with Mo?N bond lengths of 163.4 pm and mean Mo? NPh2 distances of 199.2 pm. [W4N4(NPh2)6(OnC4H9)2]: Space group P21/n, Z = 2, 1903 observed independent reflexions, R=0.039. Lattice parameters at 19°C: a = 1582.2(3) pm, b = 1182.4(2) pm, c = 2053.3(4) pm; β = 103.77(2)°. The compound forms centrosymmetric molecules, in which the central W–W dumb-bell (bond length 253.5 pm) is linked by the nitrido ligands of two WN2(NPh2)2=units in a T shaped order of the N-atoms.  相似文献   

5.
Synthesis and Crystal Structure of [Se3N2Cl]+GaCl4? [Se3N2Cl]+GaCl4? has been prepared by the reduction of [Se2NCl2]+GaC14? with SbPh3 in CH2Cl2 solution, forming red crystals, which were characterized by an X-ray structure determination. Space group P21/n, Z = 4, 1640 observed unique reflections, R = 0.050. Lattice dimensions at ? 80 °C: a = 929.4(1), b= 1078.8(1), c = 1135.7(1) pm, β = 92.026(9)°. The cations from nearly planar Se3N2 five membered rings with Se? N bond lengths from 170 to 176pm and a Se? Se bond of 242.2 pm. One of the selenium atoms is bonded to the chlorine atom.  相似文献   

6.
The SCN Ion as an Ambidentate Ligand – Synthesis and Crystal Structures of (Bu4N)4[Ag2Fe2(SCN)12] and (Et4N)2 [Ag2Fe(SCN)6] In (Bu4N)4[Ag2Fe2(SCN)12] · 2 CH3NO2 ( 1 ) and (Et4N)2[Ag2Fe(SCN)6] ( 2 ) the ambidentate SCN anions link Ag+ with Fe3+ and Fe2+ centers, respectively. The tetranuclear anions in 1 are built from [Fe(NCS)6]3– groups connected by Ag+ ions. In 2 the same bridging pattern leads to polymeric anionic chains containing [Fe(NCS)6]4– groups linked by Ag+ ions. (Bu4N)4[Ag2Fe2(SCN)12] · 2 CH3NO2 ( 1 ): a = 1184.10(10), b = 1370.80(10), c = 1776.5(2) pm, α = 99.090(10), β = 102.100(10), γ = 100.360(10)°, V = 2715.5(4) · 106 pm3, space group P1; (Et4N)2[Ag2Fe(SCN)6] ( 2 ): a = 1607.0(2), b = 1006.92(9), c = 1096.13(9) pm, V = 1773.7(3) · 106 pm3, space group Pnnm.  相似文献   

7.
Azido Complexes of Manganese(II) and Cobalt(II). Crystal Structures of (PPh4)2[Mn(N3)4] and PPh42[Co(N3)3Cl] (PPh4)2[Mn(N3)4] and (PPh4)2[Co(N3)3Cl] were obtained as light-brown and green blue, nonexplosive crystalline compounds, respectively. They are only slightly sensitive to moisture and were obtained from the tetrachloro complexes (PPh4)2MCl4 by reactions with silver azide in dichloromethane. The compounds were characterized by thier i.r. spectra and by crystal structure analyses. Both crystallized in the monoclinic space group C2/c, Z = 4, but they are not isotypic. (PPh4)2[Mn(N3)4]: structure determination with 711 independent reflexions, R = 0.097; a = 2249.1, b = 1499.6, c = 1370.3 pm, β = 104.86°. (PPh4)2[Co(N3)Cl]: 2753 reflexions, R = 0.075; a = 1119.7, b = 1899.2, c = 2115.4 pm, β = 90.47°. The structures consist of PPh4+ ions and of anions that are situated on twofold crystallographic rotation axes. The anions show positional disorder, statistically assuming two different orientations with probabilities of 50% each; in the case of [Co(N3)3Cl]2?, the Cl atom is superimposed statistically with an azido group, whereas the [Mn(N3)4]2? ion is tilted by about 20° from the ideal position to two sides of the crystallographic axis. In both compounds the cation form layers and the anions are located between the layers.  相似文献   

8.
Azido Complexes of Vanadium(IV) and Vanadium(V): (Ph4P)2[VOCl2(μ‐N3)]2 and (Ph4P)2[VOCl(μ‐N3)(N3)2]2 (Ph4P)2[VOCl2(μ‐N3)]2 ( 1 ) was prepared by reaction of (Ph4P)[VO2Cl2] with trimethylsilylazide in the molar ratio 1:2 in dichloromethane solution to give dark green, moisture sensitive, non‐explosive single crystals. The reaction is accompanied by the formation of the dark blue side‐product (Ph4P)2[VOCl(μ‐N3)(N3)2]2 ( 2a ), which can be obtained as the main product by application of a large excess of Me3SiN3. Dark blue needles of 2a crystallize spontaneously from the CH2Cl2 solution within one hour at 4 °C. After standing at 4 °C under its mother liquid within 24 hours a first‐order phase transition of 2a occurs forming dark blue prismatic single crystals of 2b . According to single crystal X‐ray structure determinations, 2a and 2b crystallize in the same type of space group , however, with different lattice dimensions. The vanadium(IV) complex 1 is characterized by X‐ray structure determination and by vibrational spectroscopy (IR, Raman) as well as by EPR spectroscopy, whereas 2b is characterized by IR spectroscopy. 1 : Space group P21/n, Z = 2, a = 1009.5(1), b = 1226.6(2), c = 1943.0(2) pm, β = 98.42(1)°, R1 = 0.0672. The complex anion forms centrosymmetric units with V2N2‐four‐membered rings with a V···V distance of 335.6(1) pm and coordination number five on the vanadium(IV) atoms. 2a : Space group , Z = 1, a = 1089.0(2), b = 1097.1(2), c = 1310.1(2) pm, α = 92.99(1)°, β = 106.12(2)°, γ = 117.05(2)°, V = 1309.8(4) Å3, dcalc. = 1.440 g·cm?3, R1 = 0.0384. The complex anion forms centrosymmetric units of symmetry Ci with V2N2 four‐membered rings and VN bond lengths of 200.4(3) and 234.4(2) pm, respectively. The non‐bonding V···V distance amounts to 356.2(1) pm. 2b : Space group , Z = 1, a = 1037.3(2), b = 1157.6(2), c = 1177.2(2) pm, α = 98.48(2)°, ° = 103.82(2)°, γ = 106.33(2)°, V = 1281.8(4) Å3, dcalc. = 1.471 g·cm?3, R1 = 0.0724. The structure of the complex anion is similar to the anion of 2a with VN bond lengths of the four‐membered V2N2 ring of 203.3(4) and 235.2(4) pm, respectively, and a non‐bonding V···V distance of 357.5(1) pm.  相似文献   

9.
Solvent-free Synthesis of Tetramethylammonium Salts: Synthesis and Characterization of [N(CH3)4]2[C2O4], [N(CH3)4][CO3CH3], [N(CH3)4][NO2], [N(CH3)4][CO2H], and [N(CH3)4][O2C(CH2)2CO2CH3] A general procedure to synthesize tetramethylammonium salts is presented. Several tetramethylammonium salts were prepared in a crystalline state by solvent-free reaction of trimethylamine and different methyl compounds at mild conditions: [N(CH3)4]2[C2O4] (cubic; a = 1 114.8(3) pm), [N(CH3)4][CO3CH3] (P21/n; a = 813.64(3), b = 953.36(3), c = 1 131.3(4) pm, β = 90.03(1)°), [N(CH3)4][NO2] (Pmmn; a = 821.2(4), b = 746.5(3), c = 551.5(2) pm), [N(CH3)4][CO2H] (Pmmn; a = 792.8(7), b = 791.7(3), c = 563.3(4) pm) and [N(CH3)4][O2C(CH2)2CO2CH3] (P21; a = 731.1(2), b = 826.4(3), c = 1 025.2(3) pm, β = 110.1(1)°). The tetramethylammonium salts were characterized by IR-spectroscopy and X-ray diffraction. The crystal structures of the methylcarbonate and the nitrite are described.  相似文献   

10.
Pseudohalogeno Metal Compounds. LXXVIII. Structures of Planar and Tetrahedral Tetrafulminato Metal Complexes: [N(C3H7)4]2 [Ni(CNO)4], [N(C3H7)4]2 [Pt(CNO)4], and [N(C3H7)4]2 [Zn(CNO)4] The crystals contain the tetrafulminatometallates of an ideal square planar structure ([Ni(CNO)4]2–, [Pt(CNO)4]2–) with D4h symmetry at the nickel and platinum atom and a tetrahedron ([Zn(CNO)4]2–) with perfect Td symmetry at the zinc atom and with linear C≡N–O ligands. The metal carbon bonds (Ni–C: 187 pm, Pt–C: 200 pm, Zn–C: 201 pm) of the metal fulminates are very close to those of the corresponding cyano complexes. In the crystals the anions ([Ni(CNO)4]2–, [Pt(CNO)4]2–, [Zn(CNO)4]2–) are separated by the cations ([N(C3H7)4]+) which explains the thermal stability of these compounds.  相似文献   

11.
Crystal Structure, Vibrational Spectra, and Normal Coordinate Analysis of ( n ‐Bu4N)2[Os(NCS)6] and ( n ‐Bu4N)3[Os(NCS)6] By tempering the solid mixture of the linkage isomers (n‐Bu4N)3[Os(NCS)n(SCN)6–n] n = 0–5 for a longer time at temperatures increasing from 60 to 140 °C the homoleptic (n‐Bu4N)3[Os(NCS)6] is formed, which on oxidation with (NH4)2[Ce(NO3)6] in acetone yields the corresponding OsIV complex (n‐Bu4N)2[Os(NCS)6]. X‐ray structure determinations on single crystals of (n‐Bu4N)2[Os(NCS)6] (1) (triclinic, space group P 1, a = 12.596(5), b = 12.666(5), c = 16.026(5) Å, α = 88.063(5), β = 80.439(5), γ = 88.637(5)°, Z = 2) and (n‐Bu4N)3[Os(NCS)6] ( 2 ) (cubic, space group Pa 3, a = 24.349(4) Å, Z = 8) have been performed. The nearly linear thiocyanate groups are coordinated with Os–N–C angles of 172.3–177.7°. Based on the molecular parameters of the X‐ray determinations the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constant fd(OsN) is 2.3 ( 1 ) and 2.10 mdyn/Å ( 2 ).  相似文献   

12.
Crystal Structures of [ReCl4(PhC?CPh)]2 · 2 CH2Cl2 and PPh4[ReOCl4] Single crystals of [ReCl4(PhC?CPh)]2 · 2 CH2Cl2 were obtained by chilling dilute solutions of the solvate [ReCl4(PhC?CPh)POCl3] in CH2Cl2. PPh4[ReOCl4] was formed by the reaction of the diphenyl acetylene complex [ReCl5(PhC?CPh)] with PPh4Cl · H2O in CH2Cl2 solution. [ReCl4(PhC?CPh)]2 · 2 CH2Cl2: space group P21/c, Z = 2, 2244 observed independent reflexions, R = 0.038. Lattice parameters (19°C): a = 987.2 pm; b = 1533.9 pm; c = 1193.8 pm; β = 90.17° The compound forms centrosymmetrical dimeric molecules with ReCl2Re bridges with Re? Cl distances of 241.2 and 267.6 pm. The longer Re? Cl bond is situated in trans-position to the equatorial, side-on coordinated diphenyl acetylene ligand with mean Re? C distances of 200 pm. PPh4[ReOCl4]: space group P4/n, Z = 2, 1487 observed, independent reflexions, R = 0.047. Lattice parameters (19°C): a = b = 1272.0 pm; c = 771.3 pm. The compound crystallizes in the AsPh4[RuNCl4] type; it consists of [ReOCl4]? anions and PPh4+ cations. The anions are tetragonal with C4v symmetry and bond lengths Re? O = 165.4 pm and Re? Cl = 232.6 pm; the bond angle OReCl is 106.7°.  相似文献   

13.
Synthesis and Crystal Structure of [N(Hex)4] [Cu2(CN)3] [N(Hex)4][Cu2(CN)3] has been prepared by solvothermal reaction of CuCN with Tetra‐n‐hexylammoniumiodide in acetone. The crystal structure is built up by condensed (CuCN)6 and (CuCN)7 rings, forming a zeolith type cyanocuprate(I) framework [Cu2(CN)3]. Space group R3; α = 44.482(6), c = 21.283(4) Å, V = 36471(9) Å3; Z = 9.  相似文献   

14.
Preparation, X-Ray Powder Data, and Lattice Parameters of K2Cd(N3)4 and Tl2Cd(N3)4 Two monoclinic complex azides of cadmium have been crystallized from aqueous solutions containing HN3: Dipotassium-cadmium-tetraazide, K2Cd(N3)4: a = 1425.4 b = 378.5 c = 888.3 pm. β = 92.9° and dithallium-cadmium-tetraazide, Tl2Cd(N3)4: a = 1066.9 b = 735.9 c = 656.3 pm, β = 104.4°.  相似文献   

15.
Tetraphenylarsonium Tetrachloromonoazidotitanate(IV); Preparation, I.R. Spectrum, and Crystal Structure of (AsPh4)2[TiCl4N3]2 The title compound was obtained from TiCl4 and AsPh4N3 in H2CCl2 solution in form of yellow crystals. Its crystal structure was determined with X-ray diffraction data and was refined to a residual index of R = 4.2%. (AsPh4)2[TiCl4N3]2 crystallizes in the space group P1 with one formula unit per unit cell. The [TiCl4N3]2? ion is situated on a crystallographic inversion center and beyond that fulfills the point symmetry C2h in good approximation. The two Ti atoms are linked via the α-N atoms of the azido groups forming a planar (TiN)2 ring. The azido groups are inclined by 20° towards the ring plane. The i.r. Spectrum was recorded and assigned.  相似文献   

16.
Phase equilibrium in the TeO2? Cu2O system was determined in air at atmospheric pressure. Differential thermal analysis (DTA), X-ray powder diffraction and optical microscopy were used to identify the phase transitions. Two congruently melting compounds Te3Cu2O7 and TeCu2O3 were obtained. They possess monoclinic and hexagonal symmetry respectively. The morphology, optical properties and indexed powder pattern up to 1.3 Å are submitted for these compounds. Experiments realized by the DTA indicated the existence of an oxidation process with beginning and rate dependent on the composition. The glass formation limits determined for 2 g and 10 g tellurite glass melts correlate with the invariant points in the system.  相似文献   

17.
Preparation, X-Ray Powder Data and Lattice Parameters of Rb2(N3)4 and Tl2Zn(N3)4 Two complex zinc azides have been prepared from aqueous solutions containing HN3: Dirubidium-zinc-tetraazide, Rb2Zn(N3)4: a = 2091.0, b = 660.3, c = 723.6 pm and dithallium-zinc- tetraazide, Tl2Zn(N3)4: a = 2056.4, b = 665.9, c = 696.6 pm. Both compounds crystallize orthorhombic in space group Pca21 and are isostructural with Cs2Zn(N3)4.  相似文献   

18.
Syntheses and Structures of (Et4N)2[Re(CO)3(NCS)3] and (Et4N)[Re(CO)2Br4] Rhenium(I) and rhenium(III) carbonyl complexes can easily be prepared by ligand exchange reactions starting from (Et4N)2[Re(CO)3Br3]. Using nonoxidizing reagents the facial ReI(CO)3 unit remains and only the bromo ligands are exchanged. Following this procedure, (Et4N)2[Re(CO)3(NCS)3] can be obtained in high yield and purity using trimethylsilylisothiocyanate. The compound crystallizes in the monoclinic space group P21/n, a = 18.442(5), b = 17.724(3), c = 18.668(5) Å, β = 92.54(1)°, Z = 8. The NCS? ligands are coordinated via nitrogen. The reaction of [Re(CO)3Br3]2? with Br2 yields the rhenium(III) anion [Re(CO)2Br4]?. The tetraethylammonium salt of this complex crystallizes in the noncentrosymmetric, orthorhombic space group Cmc21, a = 8.311(1), b = 25.480(6), c = 8.624(1) Å, Z = 4. The carbonyl ligands are positioned in a cis arrangement. Their strong trans influence causes a lengthening of the Re? Br bond distances by at least 0.05 Å.  相似文献   

19.
Thiochlorowolframates with Tungsten(V) and (VI). Crystal Structures of PPh4[WSCl4] and (PPh4)2[WS2Cl4] · 2 CH2Cl2 Diamagnetic (NEt4)2[WSCl4]2, having tungsten atoms linked via sulfur atoms, is obtained by the reaction of WCl5 with NEt4SH as well as by the reduction of WSCl4 with NEt4I in dichloromethane. If the reduction is performed with PPh4I, PPh4[WSCl4] with monomer anions is formed. Reaction of WCl6 with H2S in dichloromethane yields brown, insoluble WS2Cl2 which has terminal W?S groups and bridging W? S? W groups according to its IR spectrum. WS2Cl2 and PPh4Cl react to afford PPh4[WS2Cl3] · 2 CH2Cl2 and (PPh4)2[WS2Cl4] · 2 CH2Cl2. IR spectra are reported. The crystal structures of PPh4[WSCl4] and (PPh4)2[WS2Cl4] · 2 CH2Cl2 were determined by X-ray diffraction. PPh4[WSCl4]: tetragonal, space group P4/n, Z = 2, a = 1292.3 pm, c = 763.2 pm; R = 0.054 for 898 observed reflexions. The [WSCl4]? ion has the structure of a square pyramid with a rather short W?S bond of 206 pm length. (PPh4)2[WS2Cl4] · 2 CH2Cl2: triclinic, space group P1 , a = 1017.7, b = 1114.5, c = 1243.4 pm, α = 70.61, β = 79.73, γ = 80.80°; R = 0.076 for 1804 reflexions. The [WS2Cl4]2? has cis configuration; as it is situated on an inversion center it shows positional disorder.  相似文献   

20.
Synthesis and Crystal Structure of Rb8[P4N6(NH)4](NH2)2 with the Adamantane-like Anion [P4N6(NH)4]6? RbNH2 reacts with P3N5 (molar ratio 6:1) at 400°C within 5 d to colourless Rb8[P4N6(NH)4](NH2)2. Suitable crystals for a X-ray structure determination were obtained: The compound contains adamantane-like molecular anions [P4N6(NH)4]6?. Their centres of gravity are arranged in a distorted hexagonal primitive array. All trigonal prisms of this array contain one amide ion. Rubidium ions connect the anions irregularly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号