首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
湍流冲击射流流动与传热的数值研究进展   总被引:15,自引:0,他引:15  
陈庆光  徐忠  张永建 《力学进展》2002,32(1):92-108
湍流冲击射流由于其冲击表面时具有很高的局部传热率和冲击力,被广泛应用于如表面的加热、电子元件的冷却、纸张的干燥和材料的切割等工程应用和工业过程中.由于其流动的复杂性,也常被作为一种理想的测试实例来评价湍流模型的性能.此外,湍升力射流与地面之间的空气动力作用对V/STOL (垂直或短距离起落)飞机的性能具有很大的影响.长期以来,人们从理论分析、实验测量和数值模拟方面对冲击射流进行了广泛而系统的研究,积累了丰富的资料.本文在分析了湍流冲击射流的数值研究现状的基础上,对近年来有关湍流冲击射流流动与传热的数值研究方面的文献有选择地进行了综述,重点评述了不同湍流模型对冲击射流流动与传热的预测能力,讨论了存在的问题并对该领域今后的研究方向进行了展望.   相似文献   

2.
The flowfields of a side-dump combustor with various number of side-inlet guide-vane are measured using laser-Doppler velocimetry (LDV). The Reynolds number based on the bulk mean velocity and combustor diameter was 2.6×104. Quantities such as mean velocity, turbulence intensity, turbulent kinetic energy, vorticity, friction factor, and wall static pressure oscillation are used to characterize the fluid flow. In the dome region of the inlet-jet plane, there is one pair of counter-rotating vortices for the no-vane, one-vane, and two-vane cases and two pairs of counter-rotating vortices for the three-vane case, respectively. This trend is reversed in the impinging plane. The combustor flowfield downstream of the Xc*=2.5 station is found to be insensitive to the variation of inlet guide-vane number. In addition, the guide-vane number which provides the least pressure loss and the lowest pressure oscillation is identified for the first time. Based on the presented data, a better guide-vane number for practical reference is suggested.  相似文献   

3.
实验研究了3毫米口径轴对称收缩喷嘴在各种压比下射流垂直冲击和倾斜冲击坚固大平板产生的噪声的指向特性。发现噪声在过平板法线和喷嘴轴线的平面内呈近似四瓣分布,当喷嘴与平板距离减小时,指向壁射流下游的瓣得到增强,反之,指向喷嘴上游的瓣得到增强。喷嘴压比增加时,指向壁射流下游的瓣得到增强,反之,指向喷嘴上游的瓣得到增强。根据自由射流噪声的基本指向特性、射流冲击噪声基本指向特性、声波在平板处发生镜面反射和声波能量叠加的设定,建立了一个冲击射流总体噪声指向特性的模型,成功解释了实验结果,并揭示了形成冲击射流总体噪声指向特性的内在机理。  相似文献   

4.
近空间飞行器的气动复合控制原理及研究进展   总被引:1,自引:0,他引:1  
李素循 《力学进展》2009,39(6):740-755
简单回顾与讨论了在飞行器穿越大气层时,使用气动复合控制方案的必要性与可能性.其中最复杂情况为发动机喷流推力与舵面空气动力共同使用所形成的复合控制.喷流与外流相撞引起的强干扰形成了十分复杂的干扰流场,文中介绍了复杂流动形成的原因、流场结构的特点以及干扰引起的流场改变影响了飞行器性能的预估.基于3种研究途径:理论建模与数值模拟技术、地面试验模拟技术、飞行试验技术的研究,以及它们的发展及互相验证, 用来预估飞行器的性能.为了保证地面模拟与真实飞行之间存在相似关系, 研究相似准则的作用,及分析目前的模拟能力, 涉及到许多空气动力学界至今尚未解决的难题,为了解决这些困难对今后的研究及应用提出了多方面的需求.   相似文献   

5.
This paper reports numerical modelling of impinging jet flows using Rodi and Malin corrections to the k–ϵ turbulence model, carried out using the PHOENICS finite volume code. Axisymmetric calculations were performed on single round free jets and impinging jets and the effects of pressure ratio, height and nozzle exit velocity profile were investigated numerically. It was found that both the Rodi and Malin corrections tend to improve the prediction of the hydrodynamic field of free and impinging jets but still leave significant errors in the predicted wall jet growth. These numerical experiments suggest that conditions before impingement significantly affect radial wall jet development, primarily by changing the wall jet's initial thickness.  相似文献   

6.
The results of a numerical analysis of a supersonic underexpanded jet impinging on an inclined flat plate are presented. The effects of the angle between the plate and the jet symmetry axis, the distance from the nozzle exit section, the exit Mach number, and the off-design conditions on the distribution of the gasdynamic parameters in the jet flowfield and on the plate surface are demonstrated. Specific features of the compressed layer and obstacle surface flows are revealed. The three-dimensional flow is simulated using the large particle method on the basis of the nonstationary Euler equations written in the cylindrical coordinate system. The calculated results are compared with experimental data. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 31–35, January–February, 1997.  相似文献   

7.
The study of an under‐expanded supersonic jet impinging on a flat plate by using large‐eddy simulation is reported. A third‐order upwind compact difference and a fourth‐order symmetric compact scheme are employed to discretize the nondimensional axisymmetric compressible Favre‐filtered Navier–Stokes equations in space, whereas the third‐order Runge–Kutta method with the total variation diminishing property is adopted to deal with the temporal discretization. The numerical simulation successfully captures the shock wave and vortex structures with different scales in the flow field. Waves with high and low frequencies traveling forward and reflecting back, and sound sources in different locations can be observed. By comparison with the frequency of the impinging tone from the experiment, it can be deduced that the change of pressure and swirling strength in the shear layer, pressure change on the impinging plate, and vortex merging in the jet shear layer are interdependent with the impinging tone. The effects of nozzle lip thickness on the impinging jet flow field have been investigated. The results show that the values of pressure fluctuation and vortex swirling strength in the shear layer near the nozzle have an extremum with the variation of the nozzle lip thickness. The results provide a theoretical foundation for the design of supersonic nozzles. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents a fundamental gas-kinetic study on a high speed planar rarefied jet impinging on a flat plate of specular reflections. Based on previous collisionless planar free jet results, it is straightforward to obtain jet impingement flowfield solutions, and jet impingement for specular reflective plate surface properties. Several direct simulation Monte Carlo simulation results are provided and they validate these analytical solutions of rarefied planar jet flows. The results can find applications in many disciplines, such as materials processing, molecular beams, and space engineering.  相似文献   

9.
This paper presents a finite difference technique for solving incompressible turbulent free surface fluid flow problems. The closure of the time‐averaged Navier–Stokes equations is achieved by using the two‐equation eddy‐viscosity model: the high‐Reynolds k–ε (standard) model, with a time scale proposed by Durbin; and a low‐Reynolds number form of the standard k–ε model, similar to that proposed by Yang and Shih. In order to achieve an accurate discretization of the non‐linear terms, a second/third‐order upwinding technique is adopted. The computational method is validated by applying it to the flat plate boundary layer problem and to impinging jet flows. The method is then applied to a turbulent planar jet flow beneath and parallel to a free surface. Computations show that the high‐Reynolds k–ε model yields favourable predictions both of the zero‐pressure‐gradient turbulent boundary layer on a flat plate and jet impingement flows. However, the results using the low‐Reynolds number form of the k–ε model are somewhat unsatisfactory. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
The suitability of Wilcox's 2006 kω turbulence model for scramjet flowfield simulations is demonstrated by validation against five test cases that have flowfields representative of those to be expected in scramjets. The five test cases include a 2D flat plate, an axisymmetric cylinder, a backward‐facing step, the mixing of a pair of coaxial jets and the interaction between a shock wave and turbulent boundary layer. A generally good agreement between the numerical and experimental results is obtained for all test cases. These tests reveal that despite the turbulence model's sensitivity to freestream turbulence properties, the numerically predicted skin friction agrees with experimental data and theoretical correlations to their degree of uncertainty. The tests also confirm the importance of using a y+ value of less than 1 in getting accurate surface heat transfer distributions. In the coaxial jets case, the importance of matching the turbulence intensities at the inflow plane in improving the predictions of the turbulent mixing phenomena is also shown. A review of guidelines with regard to the setting up of grids and specification of freestream turbulence properties for turbulent Reynolds‐averaged Navier–Stokes CFD simulations is also included in this paper. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
The paper presents numerical predictions of a turbulent axisymmetric jet impinging onto a porous plate, based on a finite volume method of solving the Navier-Stokes equations for an incompressible air jet with the K–ε turbulence model. The velocity and pressure terms of the momentum equations are solved by the SIMPLE (semi-implicit method for pressure-linked equation) method. In this study, non-uniform staggered grids are used. The parameters of interest include the nozzle-to-wall distance and the suction velocity. The results of the present calculations are compared with available data reported in the literature. It is found that suction effects reduce the boundary layer thickness and increase the velocity gradient near the wall.  相似文献   

12.
Measurements in the vicinity of a stagnation point   总被引:1,自引:0,他引:1  
This paper presents measurements of a plane jet impinging onto a normal flat plate placed up to five jet widths from the jet outlet. The small spacing ensured that the stagnation streamline remained in the potential core of the jet. The plate shear stress distribution compared well to that from an analytical solution for the laminar development of the plate boundary layer whose external velocity was determined from the measured pressure. By comparing the shear stress measured under the present low level of free stream turbulence (0.35%) at the jet exit with that of Tu and Wood [Exp. Thermal Fluid Sci. 13 (1996) 364–373] made at about 4%, it is concluded that the turbulence level at the nozzle exit has only a second-order influence on the surface shear stress around the stagnation point. Some spanwise non-uniformity was observed in the plate shear stress, but this was confined largely to the transition region. The mean velocity, Reynolds stresses, and fluctuating pressure were measured along the stagnation streamline using a fast-response pressure probe. A significant increase in the streamwise normal stress and the mean square of the pressure fluctuations occurred before they were eventually attenuated by the plate. This increase occurred in the region where the streamwise velocity was decreasing close to the plate causing extra energy production through the normal stresses. Spectra of the velocity and pressure fluctuations showed that the increase in level was mainly due to the low frequency motion, whereas the subsequent decrease occurred at higher frequencies.  相似文献   

13.
The structures of the axisymmetric free jets from supersonic nozzles with the exit Mach numbers of 1.5 and 2.0 are studied with special attention to the decay of the Pitot pressures downstream of the Mach disk. The Pitot pressure probe and schlieren method are used in the experiments to diagnose the flowfield. A TVD numerical method is also applied to the Euler equations, and the computed jet structures are compared with experiments. In the underexpanded jet, the experimentally obtained Pitot pressure near the jet centerline is found to substantially recover downstream of the Mach disk. By comparing the numerical computation, this phenomenon is thought to be caused by the turbulent momentum transfer to the central region from the region outside the slip line where the stagnation pressure loss is small.  相似文献   

14.
The PHOENICS code has been used to model the flow field surrounding subsonic and underexpanded jets impinging on a ground plane in the presence of a cross-flow, for cases with both a fixed ground plane and a ‘rolling road’. The standard k-ε turbulence model is used, without correction factors. It is confirmed that this overpredicts the free jet entrainment rate; the wall jet spreading rate is slightly underpredicted but the initial thickness is too high. Agreement with experiment is, nevertheless, much better than for previous calculations, showing the importance of the extent of the grid used. The ground vortex formed in cross-flow is shown to move with varying effective velocity ratio and with rolling road operation in the same manner as experimentally observed. Ground vortex self-similarity is also accurately predicted with the numerical modelling.  相似文献   

15.
Self-sustained oscillatory phenomena in confined flow may occur when a turbulent plane jet is discharging into a rectangular cavity. An experimental set-up was developed and the flow analysis has been made using mainly hot-wire measurements, which were complemented by visualisation data. Previous studies confirmed that periodic oscillations may occur, depending on the location of the jet exit nozzle inside the cavity, and also the distance between the side-walls. The present study deals with the symmetrical interaction between a turbulent plane jet and a rectangular cavity and the influence of the geometrical characteristics of the cavity on the oscillatory motion. The size and aspect ratio of the cavity were varied together with the jet width compared to that of the cavity. The study is carried out both numerically and experimentally. The numerical method solves the unsteady Reynolds averaged Navier–Stokes equations (URANS) together with the continuity equation for an incompressible fluid. The closure of the flow equations system is achieved using a two-scale energy-flux model at high Reynolds number in the core flow coupled with a wall function treatment in the vicinity of the wall boundaries. The fundamental frequency of the oscillatory flow was found to be practically independent of the cavity length. Moreover, the oscillations are attenuated as the cavity width increases, until they disappear for a critical value of the cavity width. Contour maps of the instantaneous flow field are drawn to show the flow pattern evolution at the main phases of oscillation. They are given for several aspect ratios of the cavity, keeping constant values for the cavity width and the jet thickness. The proposed approach may help to investigate further the oscillation mechanisms and the entrainment process occurring in pressure driven jet–cavity interactions.  相似文献   

16.
A three-dimensional supersonic turbulent flow with symmetric normal injection of circular jets from the channel walls is numerically simulated. The initial Favre-averaged Navier–Stokes equations closed by the kω turbulence model are solved by an algorithm based on an ENO scheme. The mechanism of the formation of vortical structures due to the interaction of the jet with the free stream is studied for jet to crossflow total pressure ratios ranging from 3 to 50. It is known from experiments reported in the literature that, for n ? 10, mixing of the jet with the high-velocity flow leads to the formation of a pair of vortices and of an additional separation zone near the wall behind the jet. It is demonstrated that the present numerical results are consistent with such findings and that the pressure distribution on the wall ahead of the jet in the plane of symmetry is also in reasonable agreement with available experimental data.  相似文献   

17.
A SIMPLE-C algorithm and Jones-Launder k-ε two-equation turbulence model are used to simulate a two-dimensional jet impinging obliquely on a flat surface. Both the continuity and momentum equations for the unsteady state are cast into suitable finite difference equations. The pressure, velocity, turbulent kinetic energy and turbulent energy dissipation rate distributions are solved and show good agreement with various experimental data. The calculations show that the flow field structure of the jet impinging obliquely on a flat surface is strongly affected by the oblique impingement angle. The maximum pressure zone of the obliquely impinging jet flow field moves towards the left as the oblique impingement angle is decreased.  相似文献   

18.
On the analysis of an impinging jet on ground effects   总被引:1,自引:0,他引:1  
Laser Doppler measurements and flow visualization are presented for a turbulent circular jet emerging into a low-velocity cross-stream and, then, impinging on a flat surface perpendicular to the jet-nozzle axis. The experiments were performed for a Reynolds number based on the jet-exit conditions of 6 × 104, a jet-to-crossflow velocity ratio of 30 and for an impingement height of 5 jet diameters and include mean and turbulent velocity characteristics along the two normal directions contained in planes parallel to the nozzle axis. The results, which have relevance to flows found beneath VSTOL aircraft in ground effect, show the presence of a complex 3-D scarf vortex formed around the impinging jet. In zones where measurement data are not available, the flow details are numerically-visualized using a solution of the finite difference form of the fully threedimensional Reynolds-averaged Navier-Stokes equations, incorporating the turbulence viscosity concept. The turbulent structure of the flow is affected by flow distortion at the impinging zone, which results in an unconventional behaviour of the dimensionless structure parameters that determine the empirical constants in engineering models of turbulence. The relative magnitude of the terms involved in the transport equations for the turbulent stresses is quantified from the experimental data in order to assess the importance of these effects and show the extent to which the turbulent structure of the impingement zone is affected by extra rates of strain.  相似文献   

19.
喷流干扰是高超声速飞行高精度控制的一种有效手段,研究者们以往大部分都主要集中于连续流条件下喷流干扰效应的机理研究,并给出了喷流干扰流场的典型结构,而稀薄流条件下喷流干扰特性的实验数据还十分匮乏.本文利用JFX爆轰激波风洞产生高超声速稀薄自由流,基于平板模型开展不同喷流压力和自由来流参数对横向喷流干扰特性影响的实验研究,采用高速纹影成像及图像处理技术,获得稀薄流条件下喷流干扰流场演化过程及流场结构的变化规律.相比于无喷流条件形成的流场,横向喷流与稀薄自由流相互作用形成的流场结构更为复杂,喷流压力由于受到稀薄来流的扰动,斜激波会短暂穿透喷流干扰流场并延伸至楔形体上部.喷流干扰流场内桶状激波的影响范围随着喷流压力的升高而逐渐变宽,位于三波点上游的斜激波空间位置不会随喷流压力的变化而改变,而位于三波点下游的弓形激波则向上游移动,当喷流压力过低时,桶状激波不会与其他两种激波交汇形成三波点.高超声速稀薄来流压力的降低同样会使桶状激波的影响范围变宽,弓形激波同样也会向上游移动,但基本不会对斜激波空间位置产生任何影响.  相似文献   

20.
The two dimensional impinging circular twin-jet flow with no-cross flow is studied numerically and experimentally. The theoretical predications are carried out through numerical procedure based on finite volume method to solve the governing mass, momentum, turbulent kinetic energy and turbulent kinetic energy dissipation rate. The parameters studied were jet Reynolds number (9.5 × 104  Re  22.4 × 104), nozzle to plate spacing (3  h/d  12), nozzle to nozzle centerline spacing (l/d = 3, 5 and 8) and jet angle (0°  θ  20°). It is concluded that the stagnation primary point moves away in the radial main flow direction by increasing the jet angle. This shift becomes stronger by increasing the nozzle to nozzle centerline spacing (l/d). A secondary stagnation point is set up between two jets. The value of pressure at this point decreases by decreasing Reynolds number and/or increasing the jet angle.

The sub atmospheric region occurs on the impingement plate. It increases strongly by increasing Reynolds number and decreases as the jet angle and/or a nozzle to plate spacing increases. The spreading of jet decreases by increasing nozzle to plate spacing. The intensity of re-circulation zone between two jets decreases by increasing of h/d and jet angle. The increase of turbulence kinetic energy occurs within high gradient velocity.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号