首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
The potassium hydroxide-induced (Stevens) rearrangement of 1,3,4-trimethyl-1-(3,4,5-trimethoxybenzyl)-1,2,5,6-tetrahydropyridinium chloride (I) gives the desired 1,3,4-trimethyl-2-(3,4,5-trimethoxybenzyl)-1,2,5,6-tetrahydropyridine (III) and the Hofmann elimination product, N-methyl-N-(3,4,5-trimethoxybenzyl)-2,3-dimethyl-2,4-pentadienamine (II). In the presence of ethereal phenyllithium, the salt I undergoes rearrangement giving the expected tetrahydropyridine III in about 17% yield and four other products, N-(3,4,5-trimethoxybenzyl)methylamine (VI), 1,3,4-trimethyl-2-(6-methyl-2,3,4-trimethoxyphenyl)-1,2,5,6-tetrahydropyridine (IV), 1,3,3-trirnethyl-2-(3,4,5-trimethoxyphenyl)-4-rnethylenepiperidine (V) and 1,3,4-trimethyl-4-(3,4,5-trimethoxybenzyl)-1,4,5,6-tetrahydropyridine (VII), the latter being the 1,4-Stevens rearrangement product which cyclizes easily to β-2′,3′,4′-trimethoxy-2,5,9-trimethyl-7,8-benzomorphan (VIII). Their structures have been proved both by analytical and spectral data. A possible route for VIII and its stereochemical aspects are discussed.  相似文献   

2.
Five previously undescribed trimetrexate analogues with bulky 2′-bromo substitution on the phenyl ring were synthesized in order to assess the effect of this structure modification on dihydrofolate reductase inhibition. Condensation of 2-[2-(2-bromo-3,4,5-trimethoxyphenyl)ethyl]-1,l-dicyanopropene with sulfur in the presence of N,N-diethylamine afforded 2-amino-5-(2′-bromo-3′,4′,5′-trimethoxybenzyl)-4-methyl-thiophene-3-carbonitrile ( 15 ) and 2-amino-4-[2-(2′-bromo-3′,4′,5′-trimethoxyphenyl)ethyl]thiophene-3-car-bonitrile ( 16 ). Further reaction with chloroformamidine hydrochloride converted 15 and 16 into 2,4-diamino-5-(2′-bromo-3′,4′,5′-trimethoxybenzyl)-4-methylthieno[2,3-d]pyrimidine ( 8a ) and 2,4-diamino-4-[2-(2′-bromo-3′,4′,5′-trimethoxyphenyl)ethylthieno[2,3-d]pyrimidine ( 12 ) respectively. Other analogues, obtained by reductive coupling of the appropriate 2,4-diaminoquinazoline-6(or 5)-carbonitriles with 2-bromo-3,4,5-trimethoxyaniline, were 2,4-diamino-6-(2′-bromo-3′,4′,5′-trimethoxyanilinomethyl)-5-chloro-quinazoline ( 9a ), 2,4-diamino-5-(2′-bromo-3′,4′,5′-trimethoxyanilinomethyl)quinazoline ( 10 ), and 2,4-diamino-6-(2′-bromo-3′,4′,5′-trimethoxyanilinomethyl)quinazoline ( 11 ). Enzyme inhibition assays revealed that space-filling 2′-bromo substitution in this limited series of dicyclic 2,4-diaminopyrimidines with a 3′,4′,5′-trimethoxyphenyl side chain and a CH2, CH2CH2, or CH2NH bridge failed to improve species selectivity against either P. carinii or T. gondii dihydrofolate reductase relative to rat liver dihydrofolate reductase.  相似文献   

3.
The synthesis of two metabolites M3 and M4 of 2,4-diamino-5-(3, 4, 5-trimethoxybenzyl)-pyrimidine (trimethoprim, 1 ) is reported. M3 (trimethoprim 1-oxide) as well as the isomeric 3-oxide were prepared by oxidation of 1 with m-chloroperbenzoic acid. The structure of M3 was finally established by x-ra analysis [4]. The metabolite M4 [2, 4-diamino-5-(3-hydroxy-4, 5-dimethoxy-benzyl)-pyrimidine] was prepared by condensation of 3-benzyloxy-4, 5-dimethoxybenzaldehyde ( 2 ) with 3-methoxypropionitrile ( 3 ) and guanidine followed by hydrogenolysis of the intermediate 3-benzyloxy compound 4 .  相似文献   

4.
Synthesis of sugar phosphate derivatives by means of phosphite triester method is described. Seven glucose phosphotriester derivatives have been prepared, i.e. dimethyl, methyl n-propyl, and methyl isopropyl (1, 2:5, 6-di-O-isopropylidene-α-D-glucofuranose-3-) phosphate (5, 7 and 8); methyl bis-(1, 2:5, 6-di-O-isopropylidene-α-D-glucofuranose-3-) phosphate (6); methyl bis-(1, 2, 3, 4-tetra-O-acetyl-β-D-glucopyranose-6-) phosphate (9); methyl bis-(1, 2-O-isopropylidene-3,5-O-benzylidene-α-D-glucofuranose-6-) phosphate (10); and methyl (1, 2, 5, 6-di-O-iso-propylidene-α-D-glucofuranose-3-) (1, 2, 3, 4-tetra-O-acetyl-β-D-glucopyranose-6-) [phosphate (11). The results of the displacement of second chlorine atom of the reagent by different alcohols showed that methanol, n-propanol, isopropanol and as well as the glucose derivatives reacted normally to give the expected phosphite esters which yield the expected phosphate products after oxidation, but not the t-butanol. Removal of methyl group from a phosphotriester linkage can be easily achieved by the action of t-butyl amine and thus, t-butyl ammonium bis-(1, 2:5, 6-di-O-isopropylidene-α-D-glucofuranose-3-) phosphate t-butyl amine salt (12) has been obtained from its parent phosphotriester in nearly quantitative yield. The mass spectra data of di-O-isopropylideneglucose phosphate reveals that the cleavage of these compounds follows a general pattern and can be used for their characterization.  相似文献   

5.
2,4-Diamino-5,6,7,8-tetrahydropyrido[4,3-d]pyrimidines with di- and trimethoxyaralkyl substitution at the 6-position were synthesized from the N6-unsubstituted compound and appropriate aralkyl bromides in N,N-dimethylformamide solution containing a catalytic amount of sodium iodide. An improved method of preparation of 2,4-diamino-5,6,7,8-tetrahydropyrido[4,3-d]pyrimidine from 2-amino-6-benzyl-5,6,7,8-tetrahydropyrido[4,3-d]pyrimidin-4(3H)-one was also developed, in which N2 was protected by reaction with pivalic anhydride and the resulting product was subjected consecutively to reaction with 4-chlorophenylphosphorodichloridate and 1,2,4-triazole, ammonolysis to replace the 4-imidazolido group and remove the N2-pivaloyl group, and catalytic hydrogenolysis to remove the 6-benzyl group. In assays of the ability of the products to inhibit dihydrofolate reductase from Pneumocystis carinii, and Toxoplasma gondii, and rat liver the most active of the compounds tested was 2,4-diamino-6-(2′-bromo-3′,4′,5′-trimethoxybenzyl)-5,6,7,8-tetrahydropyrido[4,3-d]pyrimidine. The concentration of this compound needed to inhibit enzyme activity by 50% was 0.51 μM against the P. carinii enzyme, 0.09 μM against the T. gondii enzyme, and 0.35 μM against the rat enzyme. Thus, there was selectivity of binding to T. gondii enzyme, but not P. carinii enzyme, relative to rat enzyme. 2′,5′-Dimethoxybenzyl analogues were less active than the corresponding 3′,4′,5′-trimethoxybenzyl analogues, and compounds with a CH2CH2 or CH2CH2CH2 bridge were less active than those with a CH2 bridge. 2,4-Diamino-6-(2′-bromo-3′,4′,5′-trimethoxybenzyl)-5,6,7,8-tetrahydropyrido[4,3-d]pyrimidine showed greater selectivity than trimetrexate or piritrexim for the P. carinii and T. gondii enzyme, but was less selective than trimethoprim or pyrimethamine. However its molar potency against both enzymes was greater than that of trimethoprim, the antifolate most commonly used, in combination with sulfamethoxazole, for initial treatment of opportunistic P. carinii and T. gondii infections in patients with AIDS and other disorders of the immune system.  相似文献   

6.
Polyacetylated 5,6,7,8-Tetrahydro-D - and L -neopterins. A Special Case of N(5)-Alkylation of 5,6,7,8-Tetrahydroneopterins Improved conditions are reported for the preparation of the earlier described (6R)- and (6S)-1′-O,2′-O,3′-O,2-N,5-pentaacetyl-5,6,7,8-tetrahydro-L -neopterins, one of which could be obtained as pure crystals. Its structure, determined by X-ray-diffraction analysis, corresponds to the (6R)-enantiomer. The method has also been used to make the corresponding D -diastereoisomers. Further acetylation of (6RS)-1′-O,2′-O,3′-O,2-N-tetraacetyl-5,6,7,8-tetrahydro-D -neopterin under drastic conditions yields a mixture of several polyacetylated D -neopterin derivatives and a polyacetylated ethyl-tetrahydro-D -neopterin which was isolated in crystalline form and established by X-ray-diffraction analysis to be (6R)-1′-O,2′-O,3′-O,4-O,2-N,2-N,8-heptaacetyl-5-ethyl-5,6,7,8-tetrahydro-D -neopterin.  相似文献   

7.
High-speed counter-current chromatography (HSCCC) was applied to the preparative isolation and purification of peonidin 3-O-(6-O-(E)-caffeoyl-2-O-β-D -glucopyranosyl-β-D -glucopyranoside)-5-O-β-D -glucoside ( 1 ), cyanidin 3-O-(6-O-p-coumaroyl)-β-D -glucopyranoside ( 2 ), peonidin 3-O-(2-O-(6-O-(E)-caffeoyl-β-D -glucopyranosyl)-6-O-(E)-caffeoyl-β-D -glucopyranoside)-5-O-β-D -glucopyranoside ( 3 ), peonidin 3-O-(2-O-(6-O-(E)-feruloyl-β-D -glucopyranosyl)-6-O-(E)-caffeoyl-β-D -glucopyranoside)-5-O-β-D -glucopyranoside ( 4 ) from purple sweet potato. Separation of crude extracts (200 mg) from the roots of purple sweet potato using methyl tert-butyl ether/n-butanol/acetonitrile/water/trifluoroacetic acid (1:4:1:5:0.01, v/v) as the two-phase solvent system yielded 1 (15 mg), 2 (7 mg), 3 (10 mg), and 4 (12 mg). The purities of 1 – 4 were 95.5%, 95.0%, 97.8%, and 96.3%, respectively, as determined by HPLC. Compound 2 was isolated from purple sweet potato for the first time. The chemical structures of these components were identified by 1H NMR, 13C NMR and ESI-MSn.  相似文献   

8.
The Heart Glycosides of the Arrow Poison of Lophopetalum toxicum LOHER From the cytotoxic and positive inotropic acting bark extract of the Philippinan Lophopetalum toxicum eight heart glycosides have been isolated and their structures have been elucidated mainly by field-desorption-MS- and 1- and 13C-NMR spectroscopy. Besides the known k-Strophanthidin ( 1 ), Antiarigenin ( 6 ) and β-Antiarin (Antiarigenin-3-β-O-α-L -rhamnoside, 10 ) the following mono- and diglycosides could be identified: strophanthidin-3-β-O-α-6-desoxy-D -allopyranoside (strophalloside, 2 ), strophanthidin-3-β-O-β-6-desoxy-D -glucopyranoside (= Strophanthidin chinovoside, 3 ), strophanthidin-3-β-O[-4Oβ-D -allopyranosyl-β-6-desoxy-D -allopyranoside] ( 4 ), strophanthidin-3-β-O-[3-O-β-D -glucopyranosyl-β-6-desoxy-D -talopyranoside] ( 5 ), antiarigenin-3-β-O-[3-O-β-D -gulopyranosyl-β-6-desoxy-D -talopyranoside] ( 7 ), antiarigenin-3-β-O-[4O-β-D -allopyranosyl-β-6-desoxy-D -allopyranoside] ( 8 ), and antiarigenin-3-β-O-β-6-desoxy-D -allopyranoside (antiallosid) ( 9 ). The structure of strophanthidinchinovoside ( 3 ) could be confirmed by synthesis.  相似文献   

9.
Condensation of 6-earbethoxy-4-hydroxy-2-pyridone or a silyl derivative of 5-earbomethoxy-4-hydroxy-2-pyridone with 2′,3′,5′-tri-O-benzoyl-D-ribofuranosyl halide has provided the 3-deaza analogs of orotidine and uridine-5-carboxylic acid. The corresponding amides have also been prepared in view of their possible structural relationship to l-β-D-ribohiranosyl nicotinamide. Tri-O-benzoyl-3-deazauridine was treated with N-bromosuccinimide to give, after deblocking, 3-bromo-4-hydroxy-1-(β-D-ribofuranosyl)-2-pyridone. The anomeric configuration of these nuclcosides was confirmed by pmr spectroscopy.  相似文献   

10.
ABSTRACT

The synthesis of the new sialyl Lewis X analogue, 4-O-(α-L-fucopyranosyl)-3-O-(3-O-sodium sulfonato-β-D-galactopyranosyl)-(2S,3R, 4R)-2-ethyl-3,4-dihydroxypyrrolidine 2 has been achieved. The N-acetyl glucosamine unit of natural Lewis X has been replaced by a rigid 3R/4R-dihydroxylated pyrrolidine 12. This one has been synthezised from the methyl 4-O-benzoyl-2,3-di-O-benzyl-6-deoxy-6-iodo-α-D-altropyranoside sugar precursor 10 using the Ganem/Bernotas one-pot elimination-reductive amination ring contraction reaction. The (2S, 3R, 4R)-1-benzyloxycarbonyl-3,4-dihydroxy-2-ethylpyrrolidine 12 obtained was subsequently regioselectively glycosylated, using 2,3,4-tri-O-benzyl-α-L-fucopyranosyl fluoride and 2,3,4,6-tetra-O-benzoyl-β-D-galactopyranosyl bromide as glycosyl donors. Disaccharide containing pyrrolidine 21 was finally transformed into the target O-sulfated analog 2, after regioselective sulfation and usual deprotection.  相似文献   

11.
Abstract

O-(6-O-Benzoyl-β-d-galactopyranosyl)-(1→4)- and O-(2, 3, 4-tri-O-acetyl-β-d-galactopyranosyl)-(1→4)-2, 3, 6-tri-O-benzyl-N-benzyloxycarbonyl-1, 5-dideoxy-1, 5-imino-d-glucitols (4 and 12) were each coupled with methyl (methyl 5-acetamido-4, 7, 8, 9-tetra-O-acetyl-3, 5-dideoxy-2-thio-d-glycero-d-galacto-2-nonulopyranosid)onate (5) in acetonitrile medium in the presence of dimethyl(methylthio)sulfonium triflate (DMTST) or N-iodosuccinimide/trifluoromethanesulfonic acid to give the corresponding α-sialyl-(2 → 3)- and α-sialyl-(2 → 6)-glycosides (6 and 13α), which were converted to novel ganglioside GM3-related trisaccharides (9 and 15) containing N-methyl-1-deoxynojirimycin.  相似文献   

12.
The hydrogenation of 2′, 3′-O-isopropylidene-5-methyluridine (1) in water over 5% Rh/Al2O3 gave (5 R)- and (5 S)-5-methyl-5, 6-dihydrouridine (2) , separated as 5′-O-(p-tolylsulfonyl)- (3) and 5′-O-benzoyl- (5) derivatives by preparative TLC. on silica gel and ether/hexane developments. The diastereoisomeric differentiation at the C(5) chiral centre depends upon the reaction media and the nature of the protecting group attached to the ribosyl moiety. The synthesis of iodo derivatives (5 R)- and (5 S)- 4 is also described. The diastereoisomers 4 were converted into (5 R)- and (5 S)-2′, 3′,-O-isopropylidene-5-methyl-2, 5′-anhydro-5, 6-dihydrouridine (7) .  相似文献   

13.
Three new saponins 1–3 were isolated from Herniaria glabra by means of prep. HPLC and TLC. The structures were established mainly by a combination of 2D-NMR techniques (COSY, TOCSY, ROESY, HMQC, and HMBC) as O-α-L -rhamnopyranosyl-(1→4)-O-β-D -glucopyranosyl-(1-→6)-O-[β-D -glucopyranosyl-(1→2)]-β-D -glucopyranosyl medicagen-28-ate (herniaria saponin 4; 1 ), O-β-D -glucopyranosyl-(1→3)-O-α-L -rhamnopyranosyl-(1→2)-O-[β-(3R)-D -apiofuranosyl-(1→3)]-β-D -4-O-acetylfucopyranosyl 3-O-(β-D -glucuronopyranosyl)-16α-hydroxymedicagen-28-ate (herniaria saponin 5; 2 ), and O-α-L -rhamnopyranosyl-(1→4)-O-β-D -glucopyranosyl-(1→6)-O-[β-D -6-O-acetylglucopyra nosyl-(1→2)]-β-D -glucopyranosyl medicagen-28-ate (herniaria saponin 6; 3 ).  相似文献   

14.
A new process suitable for large scale synthesis of the antitumor-antiviral agent, 2-β-D-ribofuranosyl-4-selenazolecarboxamide (selenazofurin, 1 ), has been developed. Thus, 1-O-acetyl-2,3,5-tri-O-benzoyl-β-D-ribofuranose ( 3 ) was converted with cyanotrimethylsilane and stannic chloride to the crystalline 2,5-anhydro-3,4,6-tri-O-benzoyl-β-D-allononitrile ( 4 ) without chromatography. Cyanosugar 4 in ethanol was treated with hydrogen selenide gas to afford stereospecifically the unstable 2,5-anhydro-3,4,6-tri-O-benzoyl-β-D-allonoselenoamide ( 5 ) which was converted in situ by ethyl bromopyruvate to the stable ethyl 2-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)-4-selenazolecarboxylate ( 6). Selenazole ethyl ester 6 was deprotected with sodium methoxide affording methyl 2-β-D-ribofuranosyl-4-selenazolecarboxylate ( 7 ) which was aminated with ammonia to provide selenazofurin ( 1 ) or with other amines to provide N-substituted selenazofurin amides.  相似文献   

15.
Five new acyclic monoterpene glycosides 1 – 5 were isolated from the leaves of Viburnum orientale (Caprifoliaceae). Anatolioside ( 1 ) is a monoterpene diglycoside and its structure was elucidated as linalo-6-yl 2′-O-(α-L -rhamnopyranosyl)β-D -glucopyranoside (arbitrary numbering of linalool moiety). Compounds 2 – 5 are all derivatives of 1 , containing additional monoterpene and sugar units, connected by ester and glycoside bonds. Their structures were established as linalo-6-yl O-[(2E,6R)-6-hydroxy-2, 6-dimethylocta-2,7-dienoyl]-(1? → 4″)-O-α-L -rhamnopyranosyl-(1″? → 2″″)-β-D -glucopyranoside ( = anatolioside A; 2 ), linalo-6-yl O-β-D -glucopyranosyl-(1? → 6?)-O-[(2E,6R)-6-hydroxy-2,6-dimethylocta-2,7-dienoyl]-(1? → 4″)-O-α-L -rhamnopyranosyl-(1″ → 2′)–β-D -glucopyranoside ( = anatolioside B; 3 ), linalo-6-yl O-β-D ribo-hexopyranos-3-ulosyl-(1′? → 6?)-O-[(2E,6R)-6-hydroxy-2,6-dimethylocta-2,7-dienoyl]-(1? → 4″)-O-α-L -rhamnopyranosyl-(1″ → 2′)-β-D -glucopyranoside ( = anatolioside C; 4 ) and linalo-6-yl O-[(2E, 6R)-6-hydroxy-2,6-dimethylocta-2,7-dienoyl]-(1″? → 2″″)-O-β-D -glucopyranosly-(1″″ → 6?)-O-[(2E,6R)-6-hydroxy-2,6-dimethylocta-2,7-dienoyl]-(1? → 4″)-O-α-L -rhamnopyranosyl(1″ → 2′)-β-D -glucopyranoside ( = anatolioside D ; 5 ). The structure determinations were based on spectroscopic and chemical methods (acid and alkaline hydrolysis, acetylation and methylation).  相似文献   

16.
Abstract

Stereocontrolled synthesis of sialyl Lex epitope and its ceramide derivative with regard to the introduction of galactose or β-D-galactosyl ceramide into the terminal N-acetylglucosamine residue of sialyl Lex determinant is described. Königs-Knorr condensation of 2-(trimethylsilyl)ethyl 2, 4, 6-tri-O-benzyl-β-D-galactopyranoside (4) with 3, 4, 6-tri-O-acetyl-2-deoxy-2-phthalimido-D-glucopyranosyl bromide (5) gave the desired β-glycoside 6, which was converted into 2-(trimethylsilyl)ethyl O-(2-acetamido-4, 6-O-benzylidene-2-deoxy-β-D-glucopyranosyl)-(l→3)-2, 4, 6-tri-O-benzyl-β-D-galactopyranoside (8) via removal of the phthaloyl and O-acetyl groups, followed by N-acetylation and 4, 6-O-benzylidenation. Glycosylation of 8 with methyl 2, 3, 4-tri-O-benzyl-1-thio-β-L-fucopyranoside (9) gave the α-glycoside (10), which was transformed by reductive ring-opening of the benzyliderie acetal into the acceptor (11). Dimethyl(methylthio)sulfonium triflate (DMTST)-promoted coupling of 11 with methyl O-(methyl 5-acetamido-4, 7, 8, 9-tetra-O-acetyl-3, 5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosylonate)-(2→3)-2, 4, 6-tri-O-benzoyl-l-thio-β-D-galactopyra-noside (12) afforded the desired pentasaccharide (13), which was converted into the α-trichloroacetimidate 16 via reductive removal of the benzyl groups, then O-acetylation, removal of the 2-(trimethyIsilyl)ethyl group and treatment with trichloroacetonitrile. Condensation of 16 with (2S, 3R, 4E)-2-azido-3-O-benzoyl-4-octadecene-l, 3-diol (18) gave the β-glycoside 19, which was transformed into the title compound 21, via reduction of the azido group, coupling with octadecanoic acid, O-deacylation and hydrolysis of the methyl ester group. On the other hand, O-deacylation of 13 and subsequent hydrolysis of the methyl ester group gave the pentasaccharide epitope 17.  相似文献   

17.
Summary Dirhodium(II) complexes have been prepared from [Rh2(HNCOCF3)4] and 2,4-diamino-5-(3,4,5-trimethoxybenzyl)pyrimidine(trim) or 2,4-diamino-5-(p-chlorophenyl)-6-ethylpyrimidine (pyr). Elemental analyses, electronic absorption data and magnetic roomtemperature susceptibility measurements indicate that the complexes are binuclear with the pyrimidines terminally coordinated to rhodium atoms which are bridged by the trifluoroacetamidato-cage.  相似文献   

18.
The raspailynes (novel long-chain enol ethers of glycerol having the enol ethers double bond conjugated in sequence, to an acetylenic and an olefinic bond, isolated from the North-East-Atlantic sponges Raspailia pumila and R. ramosa) are stable under normal hydrolytic conditions for enol ethers. In contrast, when their solutions are evaporated, these lipids such as raspailyne Bl (=(?))-3-[(1Z,5Z)-(tetradeca-1,5-dien-3-ynyl)oxy]-1,2-propanediol;(?- 2 ) rapidly react with aerial O2 under normal laboratory-daylight conditions, with rupture of the C=C enol ether bond to give 1-O-formylglycerol ( 3 ) and an aldehyde (such as tridec-4-en-2ynal( 4 ) from (?)- 2 ). This reaction must be caused by triplet O2, since thermally generated singlet O2 has no effect on (?)- 2 in solution. That the mere presence of an enol-ether moiety conjugated to an acetylenic group is responsible for such a behaviour is demonstrated with the model compounds 1-methoxypentadec-1-en-3-yn-5-ol ( 6a ) and its 5-O-acetyl or 5-O-tetra-hydropyranyl derivatives 6b and 6c , respectively. Resistance to both hydroytic conditions and singlet O2 of these compounds is thought to arise from electron depletion at the enol-ether C(beta;) atom by the acetylenic group. Plausible reaction pathways for enol-ether bond rupture in these compounds by aerial O2 are outlined.  相似文献   

19.
Condensation of 3,4-dichloro-6-[(trimethylsilyl)oxy] pyridazine ( 3 ) with 1-O-acetyl-2,3,5-tri-O-benzoyl-β- D -ribofuranose ( 4 ), by the stannic chloride catalyzed procedure, has furnished 3,4-dichloro-1-(2,3,5-tri-O-benzoyl-β- D -ribofuranosyl) pyridazin-6-one ( 5 ). Nucleophilic displacement of the chloro groups and removal of the benzoyl blocking groups from 5 has furnished 3-chloro-4-methoxy-, 3,4-dimethoxy-, 4-amino-3-chloro-, 3-chloro-4-methylamino-, 3-chloro-4-hydroxy-, and 4-hydroxy-3-methoxy-1-β- D -ribofuranosylpyridazin-6-one. An unusual reaction of 5 with dimethylamine is reported. Condensation of 4,5-dichloro-3-nitro-6-[(trimethylsilyl)oxy]pyridazine with 4 yielded 4,5-dichloro-3-nitro-1-(2,3,5-tri-O-benzoyl-β- D -ribofuranosyl)pyridazin-6-one ( 24 ). Nucleophilic displacement of the aromatic nitro groups from 24 is discussed. Condensation of 3 with 3,5-di-O-p-toluoyl 2-deoxy- D -erythro-pentofuranosyl chloride ( 28 ) afforded an α, β mixture of 2-deoxy nucleosides. The synthesis of certain 3-substituted pyridazine 2′-deoxy necleosides are reported.  相似文献   

20.
6-Amino-1-(2-deoxy-β-D-erthro-pentofuranosyl)pyrazolo[4,3-c]pyridin-4(5H)-one ( 5 ), as well as 2-(β-D-ribofuranosyl)- and 2-(2-deoxy-β-D-ribofuranosyl)- derivatives of 6-aminopyrazolo[4,3-c]pyridin-4(5H)-one ( 18 and 22 , respectively) have been synthesized by a base-catalyzed ring closure of pyrazole nucleoside precursors. Glycosylation of the sodium salt of methyl 3(5)-cyanomethylpyrazole-4-carboxylate ( 6 ) with 1-chloro-2-deoxy-3,5-di-O-p-toluoyl-α-D-erythro-pentofuranose ( 8 ) provided the corresponding N-1 and N-2 glycosyl derivatives ( 9 and 10 , respectively). Debenzoylation of 9 and 10 with sodium methoxide gave deprotected nucleosides 14 and 16 , respectively. Further ammonolysis of 14 and 16 afforded 5(or 3)-cyanomethyl-1-(2-deoxy-β-D-erythro-pentofuranosyl)pyrazole-4-carboxamide ( 15 and 17 , respectively). Ring closure of 15 and 17 in the presence of sodium carbonate gave 5 and 22 , respectively. By contrast, glycosylation of the sodium salt of 6 with 2,3,5-tri-O-benzoyl-D-ribofuranosyl bromide ( 11 ) or the persilylated 6 with 1-O-acetyl-2,3,5-tri-O-benzoyl-β-D-ribofuranose gave mainly the N-2 glycosylated derivative 13 , which on ammonolysis and ring closure furnished 18 . Phosphorylation of 18 gave 6-amino-2-β-D-ribofuranosylpyrazolo[4,3-c]pyridin-4(5H)-one 5′-phosphate ( 19 ). The site of glycosylation and the anomeric configuration of these nucleosides have been assigned on the basis of 1H nmr and uv spectral characteristics and by single-crystal X-ray analysis of 16 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号