首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A digraph is quasi-transitive if there is a complete adjacency between the inset and the outset of each vertex. Quasi-transitive digraphs are interseting because of their relation to comparability graphs. Specifically, a graph can be oriented as a quasi-transitive digraph if and only if it is a comparability graph. Quasi-transitive digraphs are also of interest as they share many nice properties of tournaments. Indeed, we show that every strongly connected quasi-transitive digraphs D on at least four vertices has two vertices v1 and v2 such that Dvi is strongly connected for i = 1, 2. A result of tournaments on the existence of a pair of arc-disjoint in- and out-branchings rooted at the same vertex can also be extended to quasi-transitive digraphs. However, some properties of tournaments, like hamiltonicity, cannot be extended directly to quasi-transitive digraphs. Therefore we characterize those quasi-transitive digraphs which have a hamiltonian cycle, respectively a hamiltonian path. We show the existence of highly connected quasi-transitive digraphs D with a factor (a collection of disjoint cycles covering the vertex set of D), which have a cycle of every length 3 ≦ k ≦ |V(D)| ? 1 through every vertex and yet they are not hamiltonian. Finally we characterize pancyclic and vertex pancyclic quasi-transitive digraphs. © 1995, John Wiley & Sons, Inc.  相似文献   

2.
A two-colored digraph D is primitive if there exist nonnegative integers h and k with h+k>0 such that for each pair (i, j) of vertices there exists an (h, k)-walk in D from i to j. The exponent of the primitive two-colored digraph D is the minimum value of h+k taken over all such h and k. In this article, we consider special primitive two-colored digraphs whose uncolored digraph has n+s vertices and consist of one n-cycle and one (n???2)-cycle. We give the bounds on the exponents, and the characterizations of the extremal two-colored digraphs.  相似文献   

3.
A graph or digraph D is called super-λ, if every minimum edge cut consists of edges incident to or from a vertex of minimum degree, where λ is the edge-connectivity of D. Clearly, if D is super-λ, then λ = δ, where δ is the minimum degree of D. In this paper neighborhood, degree sequence, and degree conditions for bipartite graphs and digraphs to be super-λ are presented. In particular, the neighborhood condition generalizes the following result by Fiol [7]: If D is a bipartite digraph of order n and minimum degree δ ≥ max{3, ?(n + 3)/4?}, then D is super-λ.  相似文献   

4.
On Hamiltonian Powers of Digraphs   总被引:2,自引:0,他引:2  
 For a strongly connected digraph D, the k-th power D k of D is the digraph with the same set of vertices, a vertex x being joined to a vertex y in D k if the directed distance from x to y in D is less than or equal to k. It follows from a result of Ghouila-Houri that for every digraph D on n vertices and for every kn/2, D k is hamiltonian. In the paper we characterize these digraphs D of odd order whose (⌈n/2 ⌉−1)-th power is hamiltonian. Revised: June 13, 1997  相似文献   

5.
This paper studies the relation between the connectivity and other parameters of a digraph (or graph), namely its order n, minimum degree δ, maximum degree Δ, diameter D, and a new parameter lpi;, 0 ≤ π ≤ δ ? 2, related with the number of short paths (in the case of graphs l0 = ?(g ? 1)/2? where g stands for the girth). For instance, let G = (V,A) be a digraph on n vertices with maximum degree Δ and diameter D, so that nn(Δ, D) = 1 + Δ + Δ 2 + … + ΔD (Moore bound). As the main results it is shown that, if κ and λ denote respectively the connectivity and arc-connectivity of G, . Analogous results hold for graphs. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
In an infinite digraph D, an edge e' is reachable from an edge e if there exists an alternating walk in D whose initial and terminal edges are e and e'. Reachability is an equivalence relation and if D is 1-arc-transitive, then this relation is either universal or all of its equivalence classes induce isomorphic bipartite digraphs. In Combinatorica, 13 (1993), Cameron, Praeger and Wormald asked if there exist highly arc-transitive digraphs (apart from directed cycles) for which the reachability relation is not universal and which do not have a homomorphism onto the two-way infinite directed path (a Cayley digraph of Z with respect to one generator). In view of an earlier result of Praeger in Australas. J. Combin., 3 (1991), such digraphs are either locally infinite or have equal in- and out-degree. In European J. Combin., 18 (1997), Evans gave an affirmative answer by constructing a locally infinite example. For each odd integer n >= 3, a construction of a highly arc-transitive digraph without property Z satisfying the additional properties that its in- and out-degree are equal to 2 and that the reachability equivalence classes induce alternating cycles of length 2n, is given. Furthermore, using the line digraph operator, digraphs having the above properties but with alternating cycles of length 4 are obtained. Received April 12, 1999 Supported in part by "Ministrstvo za šolstvo, znanost in šport Slovenije", research program PO-0506-0101-99.  相似文献   

7.
The central observation of this paper is that if εn random arcs are added to any n‐node strongly connected digraph with bounded degree then the resulting graph has diameter 𝒪(lnn) with high probability. We apply this to smoothed analysis of algorithms and property testing. Smoothed Analysis: Recognizing strongly connected digraphs is a basic computational task in graph theory. Even for digraphs with bounded degree, it is NL‐complete. By XORing an arbitrary bounded degree digraph with a sparse random digraph R ∼ 𝔻n,ε/n we obtain a “smoothed” instance. We show that, with high probability, a log‐space algorithm will correctly determine if a smoothed instance is strongly connected. We also show that if NL ⫅̸ almost‐L then no heuristic can recognize similarly perturbed instances of (s,t)‐connectivity. Property Testing: A digraph is called k‐linked if, for every choice of 2k distinct vertices s1,…,sk,t1,…,tk, the graph contains k vertex disjoint paths joining sr to tr for r = 1,…,k. Recognizing k‐linked digraphs is NP‐complete for k ≥ 2. We describe a polynomial time algorithm for bounded degree digraphs, which accepts k‐linked graphs with high probability, and rejects all graphs that are at least εn arcs away from being k‐linked. © 2007 Wiley Periodicals, Inc. Random Struct. Alg., 2007  相似文献   

8.
A hypotraceable digraph is a digraph D = (V, E) which is not traceable, i.e., does not contain a (directed)Hamiltonian path, but for which D - v is traceable for all veV. We prove that a hypotraceable digraph of order n exists iff n ≥ 7 and that for each k ≥ 3 there are infinitely many hypotraceable oriented graphs with a source and a sink and precisely k strong components. We also show that there are strongly connected hypotraceable oriented graphs and that there are hypotraceable digraphs with precisely two strong components one of which is a source or a sink. Finally, we prove that hypo-Hamiltonian and hypotraceable digraphs may contain large complete subdigraphs.  相似文献   

9.
Toru Araki   《Discrete Mathematics》2009,309(21):6229-6234
For a digraph G, a k-tuple twin dominating set D of G for some fixed k≥1 is a set of vertices such that every vertex is adjacent to at least k vertices in D, and also every vertex is adjacent from at least k vertices in D. If the subgraph of G induced by D is strongly connected, then D is called a connected k-tuple twin dominating set of G. In this paper, we give constructions of minimal connected k-tuple twin dominating sets for de Bruijn digraphs and Kautz digraphs.  相似文献   

10.
This paper deals with Hamiltonicity of connected loopless circulant digraphs of outdegree three with connection set of the form {a,ka,c}, where k is an integer. In particular, we prove that if k=−1 or k=2 such a circulant digraph is Hamiltonian if and only if it is not isomorphic to the circulant digraph on 12 vertices with connection set {3,6,4}.  相似文献   

11.
We call the digraph D an k-colored digraph if the arcs of D are colored with k colors. A subdigraph H of D is called monochromatic if all of its arcs are colored alike. A set NV(D) is said to be a kernel by monochromatic paths if it satisfies the following two conditions: (i) for every pair of different vertices u,vN, there is no monochromatic directed path between them, and (ii) for every vertex x∈(V(D)?N), there is a vertex yN such that there is an xy-monochromatic directed path. In this paper, we prove that if D is an k-colored digraph that can be partitioned into two vertex-disjoint transitive tournaments such that every directed cycle of length 3,4 or 5 is monochromatic, then D has a kernel by monochromatic paths. This result gives a positive answer (for this family of digraphs) of the following question, which has motivated many results in monochromatic kernel theory: Is there a natural numberlsuch that if a digraphDisk-colored so that every directed cycle of length at mostlis monochromatic, thenDhas a kernel by monochromatic paths?  相似文献   

12.
An antipath in a digraph is a semipath containing no (directed) path of length 2. A digraph D is randomly antitraceable if for each vertex v of D, any antipath beginning at v can be extended to a hamiltonian antipath beginning at v. In this paper randomly antitraceable digraphs are characterized.  相似文献   

13.
A digraph obtained by replacing each edge of a complete p‐partite graph by an arc or a pair of mutually opposite arcs with the same end vertices is called a semicomplete p‐partite digraph, or just a semicomplete multipartite digraph. A semicomplete multipartite digraph with no cycle of length two is a multipartite tournament. In a digraph D, an r‐king is a vertex q such that every vertex in D can be reached from q by a path of length at most r. Strengthening a theorem by K. M. Koh and B. P. Tan (Discr Math 147 (1995), 171–183) on the number of 4‐kings in multipartite tournaments, we characterize semicomplete multipartite digraphs, which have exactly k 4‐kings for every k = 1, 2, 3, 4, 5. © 2000 John Wiley & Sons, Inc. J Graph Theory 33: 177‐183, 2000  相似文献   

14.
A k‐king in a digraph D is a vertex which can reach every other vertex by a directed path of length at most k. We consider k‐kings in locally semicomplete digraphs and mainly prove that all strong locally semicomplete digraphs which are not round decomposable contain a 2‐king. © 2009 Wiley Periodicals, Inc. J Graph Theory 63: 279–287, 2010  相似文献   

15.
By definition, a vertex w of a strongly connected (or, simply, strong) digraph D is noncritical if the subgraph D — w is also strongly connected. We prove that if the minimal out (or in) degree k of D is at least 2, then there are at least k noncritical vertices in D. In contrast to the case of undirected graphs, this bound cannot be sharpened, for a given k, even for digraphs of large order. Moreover, we show that if the valency of any vertex of a strong digraph of order n is at least 3/4n, then it contains at least two noncritical vertices. The proof makes use of the results of the theory of maximal proper strong subgraphs established by Mader and developed by the present author. We also construct a counterpart of this theory for biconnected (undirected) graphs.  相似文献   

16.
A digraph D is (p,q)-odd if and only if any subdivision of D contains a directed cycle of length different from p mod q. A characterization of (p,q)-odd digraphs analogous to the Seymour-Thomassen characterization of (1, 2)-odd digraphs is provided. In order to obtain this characterization we study the lattice generated by the directed cycles of a strongly connected digraph. We show that the sets of directed cycles obtained from an ear decomposition of the digraph in a natural way are bases of this lattice. A similar result does not hold for undirected graphs. However we construct, for each undirected 2-connected graph G, a set of cycles of G which form a basis of the lattice generated by the cycles of G. © 1996 John Wiley & Sons, Inc.  相似文献   

17.
J. Gómez 《Discrete Mathematics》2009,309(6):1213-2240
There is special interest in the design of large vertex-symmetric graphs and digraphs as models of interconnection networks for implementing parallelism. In these systems, a large number of nodes are connected with relatively few links and short paths between the nodes, and each node may execute the same communication software without modifications.In this paper, a method for obtaining new general families of large vertex-symmetric digraphs is put forward. To be more precise, from a k-reachable vertex-symmetric digraph and another (k+1)-reachable digraph related to the previous one, and using a new special composition of digraphs, new families of vertex-symmetric digraphs with small diameter are presented. With these families we obtain new vertex-symmetric digraphs that improve various values of the table of the largest known vertex-symmetric (Δ,D)-digraphs. The paper also contains the (Δ,D)-table for vertex-symmetric digraphs, for Δ≤13 and D≤12.  相似文献   

18.
19.
In this paper we study those digraphs D for which every pair of internally disjoint (X, Y)-paths P1, P2 can be merged into one (X, Y)-path P* such that V(P1) ∪ V(P2), for every choice of vertices X, Y ? V(D). We call this property the path-merging property and we call a graph path-mergeable if it has the path-merging property. We show that each such digraph has a directed hamiltonian cycle whenever it can possibly have one, i.e., it is strong and the underlying graph has no cutvertex. We show that path-mergeable digraphs can be recognized in polynomial time and we give examples of large classes of such digraphs which are not contained in any previously studied class of digraphs. We also discuss which undirected graphs have path-mergeable digraph orientations. © 1995, John Wiley & Sons, Inc.  相似文献   

20.
In the context of the degree/diameter problem for directed graphs, it is known that the number of vertices of a strongly connected bipartite digraph satisfies a Moore‐like bound in terms of its diameter k and the maximum out‐degrees (d1, d2) of its partite sets of vertices. It has been proved that, when d1d2 > 1, the digraphs attaining such a bound, called Moore bipartite digraphs, only exist when 2 ≤ k ≤ 4. This paper deals with the problem of their enumeration. In this context, using the theory of circulant matrices and the so‐called De Bruijn near‐factorizations of cyclic groups, we present some new constructions of Moore bipartite digraphs of diameter three and composite out‐degrees. By applying the iterated line digraph technique, such constructions also provide new families of dense bipartite digraphs with arbitrary diameter. Moreover, we show that the line digraph structure is inherent in any Moore bipartite digraph G of diameter k = 4, which means that G = L G′, where G′ is a Moore bipartite digraph of diameter k = 3. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 171–187, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号