首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
13C cross-polarization magic angle spinning (CP/MAS) NMR data for 2,2,5,7,8-pentamethylchroman-6-ol (2), 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox c) (3) and its acetate (4), 2-methoxy-2,2,5,7,8-pentamethylchroman-6-ol (5), 2-hydroxy-2,2,5,7,8-pentamethylchroman-6-ol (6) and 2,2,5,7,8-pentamethylchroman (7) are reported. A deshielding of 7.7 ppm for the carboxylic carbon was observed in solid Trolox due to formation of intermolecular hydrogen bonds within cyclic dimers. Such crystal packing permits effective cross-polarization and fast relaxation (short T1rho(H)). The impact of the proton concentration on the CP dynamics is reflected by the longer T(CP) and T1rhoH for Trolox-d2 (deuterated at mobile proton sites). The calculated GIAO RHF shielding constants are sensitive to intramolecular effects: rotation around the C-6-O bond (changes of sigma up to 8 ppm) and conformation at C-2.  相似文献   

2.
The solid-state CP/MAS 13C-NMR spectra (cross-polarization/magic-angle spinning 13C-NMR) of eight lower cyclic and one linear oligomers and several polymers of (R)-3-hydroxybutanoic acid (3-HB) are reported. The polymeric samples of different origin and molecular weight give remarkably similar and well resolved spectra, indicating considerable similarity in the conformations of the molecules and homegeneity in the solid-state environment. The crystalline cyclic oligomers 1 – 8 containing 3–9 units of 3-HB give very well resolved spectra. The number of nonequivalent positions in the solid state can be identified and is in accord with structures from X-ray diffraction where these were determined. The spectra of the oligolides become increasingly similar to those of the polymer as the ring size increases. This spectral evidence supports the view of a homogeneous and well defined conformation for the polymeric material (as proposed previously, based on other experiments).  相似文献   

3.
CP/MAS 13C-NMR spectroscopy in combination with spectral fitting was used to study the supermolecular structure of the cellulose fibril in spruce wood and spruce kraft pulp. During pulping, structures contributing to inaccessible surfaces in the wood cellulose are converted to the cellulose I allomorph, that is, the degree of order is increased. This increase is also accompanied by a conversion of cellulose I to cellulose I. Cellulose from wood composed of different cell types, that is, compression wood, juvenile wood, earlywood, latewood and normal wood exhibited a similar supermolecular structure. Assignments were made for signals from hemicellulose which contribute significantly to the spectral C-4 region (80–86 ppm) in kraft pulp spectra but substantially less to the corresponding region in wood spectra.  相似文献   

4.
5.
The solid reaction products from pyrolysis of polyethylene terephthalate in the presence and absence of red phosphorus were characterized by CP/MAS 13C-NMR, FR-IR, and MAS 31P-NMR spectroscopy. Over the temperature range of 300–400°C, polyethylene terephthalate was converted in a sealed vial to a highly crosslinked polymer of terephthalic acid. Pyrolysis in the presence of red phosphorus, which functions as a flame retardant by increasing the amount of char, yielded an intractible polyaromatic phosphate ester. After thermal cleavage of polyethylene terephthalate with formation of free carboxyl and vinyl ester groups, there are two competing reaction pathways. The smaller molecular weight fragments may enter the vapor phase where they undergo further degradation primarily to CO2, CO, and acetaldehyde, as described by others. However, if volatilization of the oligomeric fragments is inhibited, an alternate reaction pathway gives rise to the formation of highly crosslinked char. Red phosphorus decreases the volatility of the oligomeric fragments by converting them to phosphates and thereby enhances char formation.  相似文献   

6.
Hypercrosslinked polystyrenes, synthesized by reaction of linear or lightly crosslinked polystyrene with chloromethyl methyl ether (CME) and a Lewis acid in a good solvent, swell even in nonsolvents for polystyrene. Structures and dynamics of hypercrosslinked polystyrenes in both dry solid and solvent-swollen gel states have been determined by 13C-NMR spectroscopy. Deconvolution of 13C solid-state CP/MAS spectra gave the relative numbers of quaternary carbon atoms in monosubstituted and disubstituted benzenes. A typical sample, crosslinked by reaction of a mixture containing 0.5 mol of CME per mol of repeat units, contains 35% of unreacted and 65% of crosslinked aromatic rings, and no residual chloromethyl groups. Gels swollen in CDCl3 and in CH3OH have residual static dipolar interactions enabling crosspolarization and require magic angle spinning (MAS) and high power 1H decoupling to reduce chemical shift anisotropy from ∼ 104 Hz to ∼ 103 Hz. A single proton spin-lattice relaxation time in the rotating frame measured from all peaks in the 13C spectra of dry samples indicates homogeneity on a nanometer scale. Proton NMR line widths indicate no substantial molecular motions in a dry hypercrosslinked polystyrene up to at least 200°C. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 695–701, 1997  相似文献   

7.
Three Norway spruce pulps were produced using different kraft pulping methods, in order to obtain large differences in cellulose and hemicellulose proportions at a similar lignin content. The hemicellulose content in the three pulps varied between 10% and 22%. The aim of the study was to evaluate the influence of cellulose and hemicellulose on fibre ultrastructure and correlate this with the differences observed in the mechanical properties between the pulps. The ultrastructure of the pulp fibres were studied using Field Emission Scanning Electron Microscopy (FE-SEM) and Solid-State Cross Polarisation Magic Angle Spinning Carbon-13 Nuclear Magnetic Resonance (CP/MAS 13C-NMR) in combination with spectral fitting. CP/MAS 13C-NMR measured the average bulk properties of the pulp fibres, while FE-SEM allowed for observations on the ultrastructure of fibre surfaces. The ultrastructure of the fibres varied with varying hemicellulose content. The pulp with a high hemicellulose content had a porous surface structure. In fibres with a low hemicellulose content, the fibril aggregates (macrofibrils) formed a much more compact surface structure. With CP/MAS 13C-NMR this change was reflected by an increase in average fibril aggregate width with decreasing hemicellulose content. Results from FE-SEM and CP/MAS 13C-NMR correlated well. The changes recorded in ultrastructure may explain the very different mechanical properties reported previously for pulps with different hemicellulose content.  相似文献   

8.
The chemical structure of humins (HUs) and humic acids (HAs) of terrestrial and marine environments was investigated by cross-polarization magic angle spinning 13C-nuclear magnetic resonance spectroscopy (CP/ MAS 13C-NMR) and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). Samples of HUs and HAs were obtained from sediments of the Adriatic Sea, the Lagoon of Ravenna (Adriatic Sea) and the Bubano Lake as well as from an agricultural soil. HUs displayed pyrograms and NMR spectra different from those of related HAs. According to NMR spectra HUs were more aliphatic and contained fewer carboxyl groups than HAs, while pyrolysates of HUs were characterized by higher levels of products arising from carbohydrates and lower levels of lignin methoxyphenols with respect to HAs. The relative content of paraffinic carbons determined by NMR was in good agreement with the relative abundance of unbranched aliphatic hydrocarbons released by pyrolysis. Both techniques evidenced the importance of polymethylene structures in HUs. Received: 5 January 1998 / Revised: 24 March 1998 / Accepted: 25 March 1998  相似文献   

9.
The chemical structure of humins (HUs) and humic acids (HAs) of terrestrial and marine environments was investigated by cross-polarization magic angle spinning 13C-nuclear magnetic resonance spectroscopy (CP/ MAS 13C-NMR) and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). Samples of HUs and HAs were obtained from sediments of the Adriatic Sea, the Lagoon of Ravenna (Adriatic Sea) and the Bubano Lake as well as from an agricultural soil. HUs displayed pyrograms and NMR spectra different from those of related HAs. According to NMR spectra HUs were more aliphatic and contained fewer carboxyl groups than HAs, while pyrolysates of HUs were characterized by higher levels of products arising from carbohydrates and lower levels of lignin methoxyphenols with respect to HAs. The relative content of paraffinic carbons determined by NMR was in good agreement with the relative abundance of unbranched aliphatic hydrocarbons released by pyrolysis. Both techniques evidenced the importance of polymethylene structures in HUs. Received: 5 January 1998 / Revised: 24 March 1998 / Accepted: 25 March 1998  相似文献   

10.
Structural Chemistry - 6-Acetyl-8-bromo-5-[2-(N,N-dimethylamino)ethoxy)-4,7-dimethylcoumarin (1) and 6-acetyl-8-bromo-5-[2-(N,N-diethylamino)ethoxy)-4,7-dimethylcoumarin (2) were synthesized using...  相似文献   

11.
Reaction of pentaerythritol (1) or dipentaerythritol with caprolactone yields prepolymers of the general structure for i = 1, 2, 3, and 4 (2)-(5). The 13C chemical shifts of the quaternary carbons in (1)-(5) differ by more than 0.5 ppm. Conditions were determined to obtain quantitative intensity ratios of these carbons. The relative intensities give the distribution of the various branched structures and permit calculations of the average number of caprolactones per branch. Results are reported for caprolactone/polyol mole ratics of 3-66.  相似文献   

12.
13.
It has been shown that incorporation of masked isocyanates in the MY720/DDS epoxy significantly reduces the equilibrium moisture absorption by blocking of residual functional groups ( oxirane group) by the isocyanates released in the deblocking reaction of the masked isocyanates. We have now used high resolution 13C-CP/MAS NMR to follow the reactions in the solid state and to identify intermediates and by-products. The deblocking reaction of the masked isocyanates also releases the corresponding alcohol, part of which may evaporate during the curing reaction. The resolution in the solid-state spectra is good enough to identify all the reactants and the intermediates involved in the curing reaction. Difference spectra are used to emphasize changes between systems that differ in treatment or composition.  相似文献   

14.
Solid-state cross-polarization magic-angle spinning (CP/MAS) NMR spectra were recorded for the compounds [Ag(NH3)2]2SO4, [Ag(NH3)2]2SeO4 and [Ag(NH3))]NO3, all of which contain the linear or nearly linear two-coordinate [Ag(NH3)2]+ ion. The 109Ag CP/MAS NMR spectra show centrebands and associated spinning sideband manifolds typical for systems with moderately large shielding anisotropy, and splittings due to indirect 1J(109Ag,14N) spin-spin coupling. Spinning sideband analysis was used to determine the 109Ag shielding anisotropy and asymmetry parameters Deltasigma and eta from these spectra, yielding anisotropies in the range 1500-1600 ppm and asymmetry parameters in the range 0-0.3. Spectra were also recorded for 15N and (for the selenate) 77Se. In all cases the number of resonances observed is as expected for the crystallographic asymmetric units. The crystal structure of the selenate is reported for the first time. One-bond (107, 109Ag,15N) coupling constants are found to have magnitudes in the range 60-65 Hz. Density functional calculations of the Ag shielding tensor for model systems yield results that are in good agreement with the experimentally determined shielding parameters, and suggest that in the solid compounds Deltasigma and eta are reduced and increased, respectively, from the values calculated for the free [Ag(NH3)2]+ ion (1920 ppm and 0, respectively), primarily as a result of cation-cation interactions, for which there is evidence from the presence of metal-over-metal stacks of [Ag(NH3)2]+ ions in the solid-state structures of these compounds.  相似文献   

15.
16.
Fully hydrated as well as dried benzaldehyde complexes of - and -cyclodextrins were studied by using CP/MAS13C NMR techniques. Variable temperature studies have shown that below 200 K the guest is rigidly held in the complex, whereas at 328 K, only the aromatic ring performs rapid two-fold flips about the C1–C4 axis. In the -Cd complex the benzaldehyde performs more general reorientation. Removal of water causes marked changes in both guest and host spectra, generally consistent with a loss of short-range order and increase in guest motional rate.NRCC No. 27826.  相似文献   

17.
Plasma polymerized hydrocarbons made from ethane and methane were produced under different reactor conditions and probed by solid-state carbon-13 nuclear magnetic resonance (13C-NMR) with cross-polarization and magic-angle sample spinning. NMR experiments provided structural information about the plasma polymers. The conditions of low power, high hydrocarbon gas flow rate, and no added hydrogen gas appeared to give the highest amount of nonprotonated sp3 hybridized carbons in the films for the reactor design used. The use of methane or ethane as reactor gas did not affect plasma polymer structure significantly.  相似文献   

18.
The precise assignments of cross polarization/magic angle spinning (CP/MAS) (13)C NMR spectra of cellulose I(alpha) and I(beta) were performed by using (13)C labeled cellulose biosynthesized by Acetobacter xylinum (A. xylinum) ATCC10245 strain from culture medium containing D-[1,3-(13)C]glycerol or D-[2-(13)C]glucose as a carbon source. On the CP/MAS (13)C NMR spectrum of cellulose from D-[1,3-(13)C]glycerol, the introduced (13)C labeling were observed at C1, C3, C4, and C6 of the biosynthesized cellulose. In the case of cellulose biosynthesized from D-[2-(13)C]glucose, the transitions of (13)C labeling to C1, C3, and C5 from C2 were observed. With the quantitative analysis of the (13)C transition ratio and comparing the CP/MAS (13)C NMR spectrum of the Cladophora cellulose with those of the (13)C labeled celluloses, the assignments of the cluster of resonances which belong to C2, C3, and C5 of cellulose, which have not been assigned before, were performed. As a result, all carbons of cellulose I(alpha) and I(beta) except for C1 and C6 of cellulose I(alpha) and C2 of cellulose I(beta) were shown in equal intensity of doublet in the CP/MAS spectrum of the native cellulose, which suggests that two inequivalent glucopyranose residues were contained in the unit cells of both cellulose I(alpha) and I(beta) allomorphs.  相似文献   

19.
The miscibility of polyvinylphenol (PVPh) or terpenephenol (TPh) with polyoxymethylene (POM) was examined by high-resolution solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. It was found that the driving force for the mixing of POM and PVPh is the hydrogen-bonding interaction between the phenolic OH group of PVPh and the ether oxygen of POM, and that the mixing is preferentially induced in the noncrystalline phase. 1H relaxation time experiments indicated that POM/PVPh blends were homogeneous on a scale of 20–30 nm but heterogeneous on a scale of 2–3 nm. On the other hand, Fourier transform infrared and cross-polarization/magic-angle-spinning 13C-NMR (nuclear magnetic resonance) spectra revealed that POM and TPh are also mixed in the noncrystalline phase through the intermolecular hydrogen-bonding interaction, while some fraction of POM is still crystallizable. Moreover, the domain size of the micro-phase separation was estimated to be about 1 nm by the direct 1H spin-diffusion measurements, suggesting almost homogeneous mixing on a molecular level in the noncrystalline phase. © 1997 John Wiley & Sons, Ltd.  相似文献   

20.
The CP/MAS (13)C NMR line shape of cellulose I has been qualitatively analyzed by direct simulations using the Ornstein-Uhlenbeck stochastic process and the Kubo model. Both approaches describe a anhydroglucose C4 carbon as a oscillator with fluctuating Larmor frequency. The NMR resonance frequency is written omega=omega +omega(t), where the fluctuating part with zero mean was modelled as a stationary Markov diffusion process. The simulation results both motivates the use of multiple line shapes when fitting CP/MAS (13)C NMR spectra recorded on cellulose I and gives some insights into why signals from crystalline cellulose I give rise to Lorentzian line shapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号