首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
class of facet defining inequalities for the generalized assignment problem is derived. These inequalities are based upon multiple knapsack constraints and are derived from (1,k)-configuration inequalities.Partial financial support under NSF grant #CCR-8812736.Partial financial support under NSF grant #DMS-8606188.  相似文献   

2.
Several procedures for the identification of facet inducing inequalities for the symmetric traveling salesman polytope are given. An identification procedure accepts as input the support graph of a point which does not belong to the polytope, and returns as output some of the facet inducing inequalities violated by the point. A procedure which always accomplishes this task is calledexact, otherwise it is calledheuristic. We give exact procedures for the subtour elimination and the 2-matching constraints, based on the Gomory—Hu and Padberg—Rao algorithms respectively. Efficient reduction procedures for the input graph are proposed which accelerate these two algorithms substantially. Exact and heuristic shrinking conditions for the input graph are also given that yield efficient procedures for the identification of simple and general comb inequalities and of some elementary clique tree inequalities. These procedures constitute the core of a polytopal cutting plane algorithm that we have devised and programmed to solve a substantial number of large-scale problem instances with sizes up to 2392 nodes to optimality.Partial financial support by NSF grant DMS8508955 and ONR grant R&T4116663.Work done while visiting New York University. Partial financial support by a New York University Research Challenge Fund grant and ONR grant R&T4116663.  相似文献   

3.
We review strong inequalities for fundamental knapsack relaxations of (mixed) integer programs. These relaxations are the 0-1 knapsack set, the mixed 0-1 knapsack set, the integer knapsack set, and the mixed integer knapsack set. Our aim is to give a unified presentation of the inequalities based on covers and packs and highlight the connections among them. The focus of the paper is on recent research on the use of superadditive functions for the analysis of knapsack polyhedra. We also present some new results on integer knapsacks. In particular, we give an integer version of the cover inequalities and describe a necessary and sufficient facet condition for them. This condition generalizes the well-known facet condition of minimality of covers for 0-1 knapsacks. The author is supported, in part, by NSF Grants 0070127 and 0218265.  相似文献   

4.
The partition problem   总被引:1,自引:0,他引:1  
In this paper we describe several forms of thek-partition problem and give integer programming formulations of each case. The dimension of the associated polytopes and some basic facets are identified. We also give several valid and facet defining inequalities for each of the polytopes.Partial Support from NSF Grants DMS 8606188 and ECS 8800281 is gratefully acknowledged.  相似文献   

5.
This paper presents a study of the polytope defined by the minimizing form of the binary knapsack inequality, which is a greater-than-or-equal-to constraint, augmented by disjoint generalized upper bound constraints. A set of valid inequalities, called α-cover inequalities, is characterized and dominance relationships among them are established. Both sequential and sequence-independent lifting procedures are presented to tighten an α-cover inequality that is not facet defining. Computational results aimed at evaluating the strength of the non-dominated, sequentially, and sequence-independent lifted α-cover inequalities are provided.  相似文献   

6.
Given a finite undirected graph with nonnegative edge capacities the minimum capacity cut problem consists of partitioning the graph into two nonempty sets such that the sum of the capacities of edges connecting the two parts is minimum among all possible partitionings. The standard algorithm to calculate a minimum capacity cut, due to Gomory and Hu (1961), runs in O(n 4) time and is difficult to implement. We present an alternative algorithm with the same worst-case bound which is easier to implement and which was found empirically to be far superior to the standard algorithm. We report computational results for graphs with up to 2000 nodes.Partial financial support by NSF grant DMS8508955 and ONR grant R&T4116663.Work done while visiting New York University. Partial financial support by a New York University Research Challenge Fund grant and ONR grant R&T4116663.  相似文献   

7.
A Nevanlinna-type inequality is proved for holomorphic mapf:C mM and for intersection of sections of a line bundle overM, in which the intersection may not be pure dimensional and the map may be degenerate. Partial financial support was provided by the NSF under grant number DMS-8922760.  相似文献   

8.
The 0/1 knapsack equality polytope is, by definition, the convex hull of 0/1 solutions of a single linear equation. A special form of this polytope, where the defining linear equation has nonnegative integer coefficients and the number of variables having coefficient one exceeds the right-hand side, is considered. Equality constraints of this form arose in a real-world application of integer programming to a truck dispatching scheduling problem. Families of facet defining inequalities for this polytope are identified, and complete linear inequality representations are obtained for some classes of polytopes.  相似文献   

9.
The n-step mixed integer rounding (MIR) inequalities of Kianfar and Fathi (Math Program 120(2):313–346, 2009) are valid inequalities for the mixed-integer knapsack set that are derived by using periodic n-step MIR functions and define facets for group problems. The mingling and 2-step mingling inequalities of Atamtürk and Günlük (Math Program 123(2):315–338, 2010) are also derived based on MIR and they incorporate upper bounds on the integer variables. It has been shown that these inequalities are facet-defining for the mixed integer knapsack set under certain conditions and generalize several well-known valid inequalities. In this paper, we introduce new classes of valid inequalities for the mixed-integer knapsack set with bounded integer variables, which we call n-step mingling inequalities (for positive integer n). These inequalities incorporate upper bounds on integer variables into n-step MIR and, therefore, unify the concepts of n-step MIR and mingling in a single class of inequalities. Furthermore, we show that for each n, the n-step mingling inequality defines a facet for the mixed integer knapsack set under certain conditions. For n?=?2, we extend the results of Atamtürk and Günlük on facet-defining properties of 2-step mingling inequalities. For n ≥ 3, we present new facets for the mixed integer knapsack set. As a special case we also derive conditions under which the n-step MIR inequalities define facets for the mixed integer knapsack set. In addition, we show that n-step mingling can be used to generate new valid inequalities and facets based on covers and packs defined for mixed integer knapsack sets.  相似文献   

10.
We study the mixed–integer knapsack polyhedron, that is, the convex hull of the mixed–integer set defined by an arbitrary linear inequality and the bounds on the variables. We describe facet–defining inequalities of this polyhedron that can be obtained through sequential lifting of inequalities containing a single integer variable. These inequalities strengthen and/or generalize known inequalities for several special cases. We report computational results on using the inequalities as cutting planes for mixed–integer programming.Supported, in part, by NSF grants DMII–0070127 and DMII–0218265.Mathematics Subject Classification (2000): 90C10, 90C11, 90C57  相似文献   

11.
We present a branch-and-cut algorithm to solve capacitated network design problems. Given a capacitated network and point-to-point traffic demands, the objective is to install more capacity on the edges of the network and route traffic simultaneously, so that the overall cost is minimized. We study a mixed-integer programming formulation of the problem and identify some new facet defining inequalities. These inequalities, together with other known combinatorial and mixed-integer rounding inequalities, are used as cutting planes. To choose the branching variable, we use a new rule called “knapsack branching”. We also report on our computational experience using real-life data. Received April 29, 1997 / Revised version received January 9, 1999? Published online June 28, 1999  相似文献   

12.
On the directed hop-constrained shortest path problem   总被引:1,自引:0,他引:1  
  相似文献   

13.
 A dynamic knapsack set is a natural generalization of the 0-1 knapsack set with a continuous variable studied recently. For dynamic knapsack sets a large family of facet-defining inequalities, called dynamic knapsack inequalities, are derived by fixing variables to one and then lifting. Surprisingly such inequalities have the simultaneous lifting property, and for small instances provide a significant proportion of all the facet-defining inequalities. We then consider single-item capacitated lot-sizing problems, and propose the joint study of three related sets. The first models the discrete lot-sizing problem, the second the continuous lot-sizing problem with Wagner-Whitin costs, and the third the continuous lot-sizing problem with arbitrary costs. The first set that arises is precisely a dynamic knapsack set, the second an intersection of dynamic knapsack sets, and the unrestricted problem can be viewed as both a relaxation and a restriction of the second. It follows that the dynamic knapsack inequalities and their generalizations provide strong valid inequalities for all three sets. Some limited computation results are reported as an initial test of the effectiveness of these inequalities on capacitated lot-sizing problems. Received: March 28, 2001 / Accepted: November 9, 2001 Published online: September 27, 2002 RID="★" ID="★" Research carried out with financial support of the project TMR-DONET nr. ERB FMRX–CT98–0202 of the European Union. Present address: Electrabel, Louvain-la-Neuve, B-1348 Belgium. Present address: Electrabel, Louvain-la-Neuve, B-1348 Belgium. Key words. knapsack sets – valid inequalities – simultaneous lifting – lot-sizing – Wagner-Whitin costs  相似文献   

14.
The lot-sizing polytope is a fundamental structure contained in many practical production planning problems. Here we study this polytope and identify facet–defining inequalities that cut off all fractional extreme points of its linear programming relaxation, as well as liftings from those facets. We give a polynomial–time combinatorial separation algorithm for the inequalities when capacities are constant. We also report computational experiments on solving the lot–sizing problem with varying cost and capacity characteristics.Supported, in part, by NSF Grants 0070127 and 0218265, and a grant from ILOG, Inc.  相似文献   

15.
In this paper, we present an approximate lifting scheme to derive valid inequalities for general mixed integer programs and for the group problem. This scheme uses superadditive functions as the building block of integer and continuous lifting procedures. It yields a simple derivation of new and known families of cuts that correspond to extreme inequalities for group problems. This new approximate lifting approach is constructive and potentially efficient in computation. J.-P. P. Richard was supported by NSF grant DMI-348611.  相似文献   

16.
We introduce new affine invariants for smooth convex bodies. Some sharp affine isoperimetric inequalities are established for the new invariants. Partially supported by an NSERC grant and an FRDP grant. Partially supported by an NSF grant, an FRG-NSF grant and a BSF grant.  相似文献   

17.
Adam Letchford defines in [4] the Domino Parity inequalities for the Symmetric Traveling Salesman Polytope (STSP) and gives a polynomial algorithm for the separation of such constraints when the support graph is planar, generalizing a result of Fleischer and Tardos [2] for maximally violated comb inequalities. Naddef in [5] gives a set of necessary conditions for such inequalities to be facet defining for the STSP. These conditions lead to the Domino inequalities and it is shown in [5] that one does not lose any facet inducing inequality restricting the Domino Parity inequalities to Domino inequalities, except maybe for some very particular case. We prove here that all the domino inequalities are facet inducing for the STSP, settling the conjecture given in [5]. As a by product we will also have a complete proof that the comb inequalities are facet inducing. Mathematics Subject Classification (2000):Main 90C57, secondary 90C27  相似文献   

18.
We study the mixed 0-1 knapsack polytope, which is defined by a single knapsack constraint that contains 0-1 and bounded continuous variables, through the lifting of continuous variables fixed at their upper bounds. We introduce the concept of a superlinear inequality and show that, in this case, lifting is significantly simpler than for general inequalities. We use the superlinearity theory, together with the traditional lifting of 0-1 variables, to describe families of facets of the mixed 0-1 knapsack polytope. Finally, we show that superlinearity results can be extended to nonsuperlinear inequalities when the coefficients of the variables fixed at their upper bounds are large.This research was supported by NSF grants DMI-0100020 and DMI-0121495Mathematics Subject Classification (1991): 90C11, 90C27  相似文献   

19.
Cover inequalities are commonly used cutting planes for the 0–1 knapsack problem. This paper describes a linear-time algorithm (assuming the knapsack is sorted) to simultaneously lift a set of variables into a cover inequality. Conditions for this process to result in valid and facet-defining inequalities are presented. In many instances, the resulting simultaneously lifted cover inequality cannot be obtained by sequentially lifting over any cover inequality. Some computational results demonstrate that simultaneously lifted cover inequalities are plentiful, easy to find and can be computationally beneficial.  相似文献   

20.
We consider the polyhedral approach to solving the capacitated facility location problem. The valid inequalities considered are the knapsack cover, flow cover, effective capacity, single depot, and combinatorial inequalities. The flow cover, effective capacity and single depot inequalities form subfamilies of the general family of submodular inequalities. The separation problem based on the family of submodular inequalities is NP-hard in general. For the well known subclass of flow cover inequalities, however, we show that if the client set is fixed, and if all capacities are equal, then the separation problem can be solved in polynomial time. For the flow cover inequalities based on an arbitrary client set and general capacities, and for the effective capacity and single depot inequalities we develop separation heuristics. An important part of these heuristics is based on the result that two specific conditions are necessary for the effective cover inequalities to be facet defining. The way these results are stated indicates precisely how structures that violate the two conditions can be modified to produce stronger inequalities. The family of combinatorial inequalities was originally developed for the uncapacitated facility location problem, but is also valid for the capacitated problem. No computational experience using the combinatorial inequalities has been reported so far. Here we suggest how partial output from the heuristic identifying violated submodular inequalities can be used as input to a heuristic identifying violated combinatorial inequalities. We report on computational results from solving 60 medium size problems. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号