首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The collisionally induced dissociation of CH2Br+2 to yield CH2Br+ + Br has been investigated by photoelectronphotoion coincedence spectroscopy in which nominally zero kinetic electrons were detected. The reactant CH2Br+2 ions were produced by photoionzation with intenal energies of 0.0, 0.20 and 0.60 eV. For all three internal energies, the kinetic energy threshold for dissociation is just equal to the energy defect.  相似文献   

2.
The threshold energy Et = 10.06 eV (0.002 eV standard deviation) is determined for photoelectron emission by liquid water and is correlated with Et = 8.45 eV for OH? (aq). Free energy changes and standard reduction potentials are calculated for both emission processes. Reorganization free energies are correlated to solvation free energies for H2O+(aq) and OH?(aq).  相似文献   

3.
From measurements of the heats of iodination of CH3Mn(CO)5 and CH3Re(CO)5 at elevated temperatures using the ‘drop’ microcalorimeter method, values were determined for the standard enthalpies of formation at 25° of the crystalline compounds: ΔHof[CH3Mn(CO)5, c] = ?189.0 ± 2 kcal mol?1 (?790.8 ± 8 kJ mol?1), ΔHof[Ch3Re(CO)5,c] = ?198.0 ± kcal mol?1 (?828.4 ± 8 kJ mo?1). In conjunction with available enthalpies of sublimation, and with literature values for the dissociation energies of MnMn and ReRe bonds in Mn2(CO)10 and Re2(CO)10, values are derived for the dissociation energies: D(CH3Mn(CO)5) = 27.9 ± 2.3 or 30.9 ± 2.3 kcal mol?1 and D(CH3Re(CO)5) = 53.2 ± 2.5 kcal mol?1. In general, irrespective of the value accepted for D(MM) in M2(CO)10, the present results require that, D(CH3Mn) = 12D(MnMn) + 18.5 kcal mol?1 and D(CH3Re) = 12D(ReRe) + 30.8 kcal mol?1.  相似文献   

4.
We study dynamics of the CH3 + OH reaction over the temperature range of 300–2500 K using a quasiclassical method for the potential energy composed of explicit forms of short‐range and long‐range interactions. The explicit potential energy used in the study gives minimum energy paths on potential energy surfaces showing barrier heights, channel energies, and van der Waals well, which are consistent with ab initio calculations. Approximately, 20% of CH3 + OH collisions undergo OH dissociation in a direct‐mode mechanism on a subpicosecond scale (<50 fs) with the rate coefficient as high as ~10?10 cm3 molecule?1 s?1. Less than 10% leads to the formation of excited intermediates CH3OH? with excess vibrational energies in CO and OH bonds. CH3OH? stabilizes to CH3OH, redissociates back to reactants, or forms one of various products after intramolecular energy redistribution via bond dissociation and formation on the time scale of 50–200 fs. The principal product is 1CH2 (k being ~10?11), whereas ks for CH2OH, CH2O, and CH3O are ~10?12. The minor products are HCOH and CH4 (k~10?13). The total rate coefficient for CH3 + OH → CH3OH? → products is ~10?11 and is weakly dependent on temperature. © 2011 Wiley Periodicals, Inc. Int J Chem Kinet 43: 455–466, 2011  相似文献   

5.
Trapped ion cyclotron resonance spectroscopy has been used for the first time to study the electron impact dissociation of ions. Fragmentation of C6H5CH+ to produce C6H+4 and HCN is observed to occur at low electron energies (3–9 eV). The extent of dissociation is observed to be linear in emission current, rising from a threshold at 3.0 ± 0.5 eV to a maximum cross section estimated to be 6A2 at 7.5 ± 0.5 eV. The implications of these results are discussed.  相似文献   

6.
The dissociation behavior of energy-selected tetraethylsilane, triethylsilane, and diethylsilane photocations is studied using the threshold photoelectron-photoion coincidence (TPEPICO) technique. In the 8–12. 5 eV photon energy range, 0 K dissociation onsets have been measured from the TPEPICO data. The dissociation channels observed include loss of ethane, hydrogen molecule, ethyl radical and hydrogen atom, depending upon the molecular ion under investigation. The thermochemistry of the molecular ions and dissociation fragments is obtained by an analysis that takes into account the kinetics and internal energy distributions of the ions. The various dissociation onsets permit the reevaluation of both neutral and ionic silane thermochemistry. We observed 298-K ethyl group values of 60±10 and 94±10 kJ mol?1 for neutral and ionic silanes, respectively. These values are considerably smaller than the previously reported values of 86 and 130 kJ mol?1, respectively. Finally, a Δ f H ° (298 K) of ?141.5 ± 21 kJ/mol for neutral diethyl silane is derived from the dissociative ionization onset of diethylsilane.  相似文献   

7.
The total dissociation cross sections for silane and disilane are reported for electron energies above their ionization thresholds up to 110 eV. The measurements are derived from a kinetic analysis of silane and disilane dissociation in a constant-flow multipole dc plasma reactor. The methane dissociation cross section was also measured and found in agreement with published data. Maxima for silane and disilane, occurring around 60 eV, are respectively (1.2±3)×10?15 cm2 and (2.6±0.6)× 10?15 cm2. Total ionization cross sections are also measured and above 50 eV the ratios of dissociative ionization to dissociation cross sections are 0.5±0.1 and 0.25±0.10 respectively for silane and disilane. The probability for silane elimination in the disilane fragmentation reaches a maximum of 0.8 at 19 eV and decreases down to 0.5 at 100 eV. Dissociation processes of silane and disilane are discussed in comparison with methane and ethane  相似文献   

8.
Ion-molecule reactions with the trimethylsilyl ion were used to distinguish between cis- and trans-1,2-cyclopentanediol isomers. The ion kinetic energy of [Si(CH3)3]+ was varied from 0 eV to 15 eV (center of mass frame of reference). At low ion kinetic energies (<4 eV), there are significant differences in the relative stabilities and decomposition behavior of the adduct ions [M + Si(CH3)3]+. The cis-1,2-cyclopentanediol isomer favors decomposition of [M + Si(CH3)3]+ to yield the hydrated trimethylsilyl ion [Si(CH3)3OH2]+ at m/z 91. For the trans isomer, the formation of the hydrated trimethylsilyl ion is an endothermic process with a definite threshold ion kinetic energy.  相似文献   

9.
The dissociative photoionization of molecular‐beam cooled CH2CO in a region of ?10–20 eV was investigated with photoionization mass spectrometry using a synchrotron radiation as the light source. Photoionization efficiency curves of CH2CO+ and of observed fragment ions CH2+, CHCO+, HCO+, C2O+, CO+, and C2H2+ were measured to determine their appearance energies. Relative branching ratios as a function of photon energy were determined. Energies for formation of these observed fragment ions and their neutral counterparts upon ionization of CH2CO are computed with the Gaussian‐3 method. Dissociative photoionization channels associated with six observed fragment ions are proposed based on comparison of determined appearance energies and predicted energies. The principal dissociative processes are direct breaking of C=C and C‐H bonds to form CH2+ + CO and CHCO+ + H, respectively; at greater energies, dissociation involving H migration takes place.  相似文献   

10.
Using the laser photoemission technique, a comparative study of thermodynamic and energy characteristics of electron transfer (ET) is carried out for a number of alkylaryl intermediates (IM) (benzyl, benzhydryl radicals) and alkyl halides (chloromethyl and dichloromethyl radicals). It is found that the standard free energies of activation of radicals under study are 0.34–0.38 eV and the preexpoential factors are between 109 and 1010s?1 and weakly depend on the solution nature. The reorganization energies of the medium for these IM are estimated in terms of the classical Marcus theory. The results are compared with the literature data on the dissociative ET in monohalogenomethanes CH3Hal/CH3Hal, polychloromethanes CHnHal4 ? n /CHnHal 4?n , and some other systems. Possible reasons for the different probabilities of observing reversible ET for IM under study are discussed.  相似文献   

11.
The kinetics and mechanism of Cl-atom initiated reactions of CH3C(O)CHO were studied using the FTIR detection method in the photolysis (λ < 300 nm) of Cl2? CH3C(O)CHO mixtures in 700 torr of N2? O2 diluent at 298 ± 2 K. The observed product distribution over the O2 pressure range from 0–700 torr, combined with relative rate measurements, provided evidence that: (1) the primary step is Cl + CH3C(O)CHO → HCl + CH3C(O)CO with a rate constant of (4.8 ± 1.1) × 10?11 cm3 molecule?1 s?1; and (2) the predominant fate of the primary radical CH3C(O)CO under atmospheric conditions is unimolecular dissociation to CH3C(O) radicals and CO, rather than O2-addition to yield the corresponding carbonylperoxy radical CH3C(O)C(O)OO.  相似文献   

12.
The dissociation of a ground state H2 molecule in single collisions with a Li+ ion has been studied using a time of flight technique over a large range of center of mass scattering angles (30° ? υ ? 180°) and collision energies (16 eV < Ecm < 55.5 ev).The results have been transformed into the center of mass system to obtain inelastic differential cross sections (contour maps). In contrast to most other scattering experiments on collision induced dissociation, the results at high energies (Ecm > 40 eV) cannot be explained by a two-step mechanism. Instead dissociation appears to occur in a time comparable to the collision time. The results are consistent with several collision models. Of these the spectator model in which only one of the atoms of the molecule is struck by the incident ion is favored since it is in good agreement with the differential cross sections for backward scattering.  相似文献   

13.
Ab initio molecular orbital calculations have been used to study the condensation reactions of CH3? with NH3, H2O, HF and H2S. Geometry optimization has been carried out at the Hartree—Fock (HF) level with the split-valence plus d-polarization 6-31G* basis set and improved relative energies obtained from calculations which employ the split-valence plus dp-polarization 6-31G** basis set with electron correlation incorporated via Moller—Plesset perturbation theory terminated at third order (MP3). Zero-point vibrational energies have also been determined and taken into account in deriving relative energies. The structures of the intermediates CH3XH? (X = NH2, OH, F and SH) have been obtained and dissociation of these intermediates into CH2X+ + H2 on the one hand, and CH3? + HX on the other, has been examined. It is found that for those species for which the methyl condensation reaction is observed to have an appreciable rate (X = NH2 and SH), the transition structure for hydrogen elimination from CH3XH? lies significantly lower in energy than the reactants CH3? + HX (by 75 and 70 kJ mol?1 respectively). On the other hand, for those species for which the methyl condensation reaction is not observed (X = OH and F), the transition structure for H2 elimination lies higher in energy than CH3? + HX (by 6 and 87 kJ mol?1 respectively).  相似文献   

14.
The process K + H2S/D2S → HS?/DS? + K++ H/D has been investigated for K impact energies from near threshold to ≈100 eV. Positive and negative ion energy spectra have been obtained in the forward direction. The threshold for HS? or DS?production corresponds to the HS?/DS?+ H/D limit of the 2A1 H2S?/D2S? state at 1.55 eV.  相似文献   

15.
Threshold energies Et are determined for photoelectron emission by 20 inorganic anions in aqueous solution (7.1 < Et < 9.1 eV). Calculated values of Et for Cl?, Br?, I? agree with experiment. The Et are correlated with charge-transf absorption spectra.  相似文献   

16.
The flash photolysis of azomethane in a quartz reaction vessel produces mainly ethane (>75%) plus smaller quantities of methane, ethylene, and acetylene. The minor products are interpreted quantitatively in terms of methyl radical photolysis at 216 nm to give CH2 and H. This interpretation is substantiated by the dependence of the minor products on flash intensity. The reduction of the ethane yield on adding NO is employed to obtain a rate constant for CH3 + NO as a function of total pressure, based on a value for methyl radical recombination of 4.2 × 10?11 cm3/molec · sec. An RRKM analysis is used to extrapolate the data to give a limiting high-pressure rate constant for CH3 + NO of (1.2 ± 0.1) × 10?11 cm3/molec · sec at 298°K.  相似文献   

17.
The technique of threshold photoelectron-photoion coincidence (PEPICO) has been employed to determine the average kinetic energy release and the kinetic energy release distribution (KERD) for the iodine loss from 1- and 2-iodopropane ions as a function of the ion internal energy. The KERDs at all precursor-ion energies investigated (0–3 eV excess energy) have the shape of statistically expected distributions, 1-iodopropane ions which dissociate with an apparent 0.16 eV reverse activation barrier, are shown to isomerize at low energies prior to dissociation, to produce subsequently the 2-propyl C3H7? structure. At high energies they may form a different C3H7? isomer. The experimentally observed average kinetic energy releases are approximately a factor of 2 greater than expected statistically suggesting that not all vibrational modes participate in the energy disposal. The secondary dissociation of the C3H7? isomers to C3H3 which is inhibited by a reverse activation barrier of = 0.4 eV indicates that the 1- and 2-iodopropane ions dissociate 75% and 60% respectively, to form the excited 1(2P1/2) atoms.  相似文献   

18.
Dissociative electron attachment to SO2, NO2, NF3 and H2O2 is studied in terms of the kinetic energies of the dominant fragment ions. The O? data from SO2 show that the two major resonances at 4.6 and 7.2 eV respectively have the same dissociation limit. Similarly, the resonances at 1.8 and 3.5 eV in the O? channel in NO2 appear to have same dissociation limit of NO (X 2Π) + O?, while the resonance at 8.5 eV appears to dissociate to give NO (a 4Πi) along with O?. We find considerable internal excitation of the neutral fragments in all these cases along with that of NF3, whereas the negative ion resonance in H2O2 appears to fragment almost like a diatomic system with very little internal excitation of the OH and OH? fragments.  相似文献   

19.
Radical cations [Met-Gly]?+, [Gly-Met]?+, and [Met-Met]?+ have been generated through collision-induced dissociation (CID) of [CuII(CH3CN)2(peptide)]?2+ complexes. Their fragmentation patterns and dissociation mechanisms have been studied both experimentally and theoretically using density functional theory at the UB3LYP/6-311++G(d,p) level. The captodative structure, in which the radical is located at the α-carbon of the N-terminal residue and the proton is on the amide oxygen, is the lowest energy structure on each potential energy surface. The canonical structure, with the charge and spin both located on the sulfur, and the distonic ion with the proton on the terminal amino group, and the radical on the α-carbon of the C-terminal residue have similar energies. Interconversion between the canonical structures and the captodative isomers is facile and occurs prior to fragmentation. However, isomerization to produce the distonic structure is energetically less favorable and cannot compete with dissociation except in the case of [Gly-Met]?+. Charge-driven dissociations result in formation of [b n – H]?+ and a 1 ions. Radical-driven dissociation leads to the loss of the side chain of methionine as CH3-S-CH?=?CH2 producing α-glycyl radicals from both [Gly-Met]?+ and [Met-Met]?+. For [Met-Met]?+, loss of the side chain occurs at the C-terminal as shown by both labeling experiments and computations. The product, the distonic ion of [Met-Gly]?+, NH3 +CH(CH2CH2SCH3)CONHCH?COOH dissociates by loss of CH3S?. The isomeric distonic ion NH3 +CH2CONHC?(CH2CH2SCH3)COOH is accessible directly from the canonical [Gly-Met]?+ ion. A fragmentation pathway that characterizes this ion (and the distonic ion of [Met-Met]?+) is homolytic fission of the Cβ–Cγ bond to lose CH3SCH2 ?.   相似文献   

20.
The ion–molecule reactions of CH3NH2+, (CH3)2NH+, and (CH3)3N+ with the respective amines have been investigated at thermal kinetic energies in a high-pressure photoionization mass spectrometer at several wavelengths (energies) in the vacuum ultraviolet. The absolute rate coefficient for proton transfer from (CH3)3N+ to (CH3)3N decreases from 8.2 × 10?10 cm3/molecule · sec at 147.0 nm (8.4 eV) to 4.9 × 10?10 cm3/molecule. sec at 106.7-104.8 nm (11.7 eV). In dimethylamine, the rate coefficient decreases from 11.6 × 10?10 cm3/molecular. sec at 8 4 eV to 10.2 × 10?10 cm3/molecule osec at 11.7 eV, while no significant effect of energy was detected in methylamine. The reactions of several fragment ions are also reported. Experiments were also carried out at pressures up to 0.5 torr in order to investigate the further solvation of CH3NH2+, (CH3)2NH2+, and (CH3)3NH+. It was found that the maximum proton solvation numbers in methyl-, dimethyl-, and trimethyl-amine are 4, 3, and 2, respectively, under these conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号