首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Surface vibrational sum frequency spectroscopy has been shown to be a powerful surface probe of molecules adsorbed at solid and liquid surfaces. Studies described herein apply this method to studying heterogeneous air/aqueous solution interfaces to understand surface adsorption and structure of several solute molecules adsorbed at aqueous surfaces. The molecules examined at aqueous solution surfaces include Dimethyl sulfoxide (DMSO), methane sulfonic acid (MSA) and acetone. These results reveal that small soluble molecules such as these organize in different ways at the surface of aqueous solutions. This surface organization has implications for atmospheric chemical processes since adsorption at the surface of atmospheric aerosols affects bulk chemical concentrations.  相似文献   

2.
The uptake of methanol at the air-liquid interface of 0-96.5 wt % sulfuric acid (H2SO4) solutions has been observed directly using vibrational sum frequency generation (VSFG) spectroscopy. As the concentration of H2SO4 increases, the VSFG spectra reveal a surface reaction between methanol and H2SO4 to form methyl hydrogen sulfate. The surface is saturated with the methyl species after 15 min. The uptake of methyl species into the solutions by Raman spectroscopy was also observed and occurred on a much longer time scale. This suggests that uptake of methanol by sulfuric acid solutions is diffusion-limited.  相似文献   

3.
《Chemical physics letters》1987,141(4):350-356
IR-visible sum generation spectroscopy, an interface-selective probe of molecular vibrations, is used to obtain vibrational spectra of molecular monolayers on metal and semiconductor surfaces. The spectra obey electric dipole selection rules: vibrational modes must be both Raman and infrared active to show sum frequency resonances. The orientation of molecules at the interface can be determined by interference between the resonant molecular signal and a substrate background signal. Sum generation is also observed at a buried interface in the absence of a dielectric discontinuity, suggesting uses at buried molecular structures such as polymer-polymer interfaces.  相似文献   

4.
The segregation behavior of binary polymer blends at hydrophilic solid sapphire and air interfaces was investigated by infrared-visible sum frequency generation (SFG) vibrational spectroscopy. SFG spectra were collected from a bulk miscible blend consisting of identical molecular weight (approximately 54,000) and similar surface free energy (29-35 dyn/cm) components of atactic polypropylene (aPP) and aspecific poly(ethylene-co-propylene) rubber (aEPR). Characteristic CH resonances of the blend were contrasted with those of the individual components at both buried (sapphire/polymer) and free (air/polymer) interfaces. Preferential segregation of the aPP component was observed after annealing at both air/polymer and sapphire/polymer interfaces. SFG spectra revealed ordering of the polymer backbone segments with the methylene (CH2) groups perpendicular to the surface at the sapphire interface and the methyl (CH3) groups upright at the air interface. The SFG results indicate that the surface composition can be determined from the peak intensities that are characteristic of each component and that conformational entropy played a likely role in surface segregation. aPP occupied a smaller free volume at the surface because of a statistically smaller segment length (aPP is more flexible and has a shorter length). In addition, the high density of the ordered CH3 side branches enhanced the surface activity by allowing the long-chain backbone segments of aPP to order at the surface.  相似文献   

5.
Interfacial peptides and proteins are critical in many biological processes and thus are of interest to various research fields. To study these processes, surface sensitive techniques are required to completely describe different interfacial interactions intrinsic to many complicated processes. Sum frequency generation (SFG) spectroscopy has been developed into a powerful tool to investigate these interactions and mechanisms of a variety of interfacial peptides and proteins. It has been shown that SFG has intrinsic surface sensitivity and the ability to acquire conformation, orientation, and ordering information about these systems. This paper reviews recent studies on peptide/protein-substrate interactions, peptide/protein-membrane interactions, and protein complexes at interfaces and demonstrates the ability of SFG on unveiling the molecular pictures of complicated interfacial biological processes.  相似文献   

6.
Interfacial structures of water at polyvinyl alcohol (PVA) and poly(2-acrylamido-2-methypropane) sulfonic acid sodium salt (PNaAMPS)/quartz interfaces were investigated by sum frequency generation (SFG) spectroscopy. Two broad peaks were observed in OH stretching region at 3200 and 3400 cm(-1), corresponding to the symmetric OH stretching of tetrahedrally coordinated, i.e., strongly hydrogen bonded "ice-like" water, and the asymmetric OH stretching of water in a more random arrangement, i.e., weakly hydrogen bonded "liquid-like" water, respectively, in both cases. The "liquid-like" water became dominant when the PVA gel was pressed against the quartz surface. The relative intensity of the SFG signal due to the "liquid-like" water to that due to the "ice-like water" at the quartz surface modified with a self-assembled monolayer of aminopropyltrimethoxysilane (APS) became higher when the negatively charged PNaMPS gel was contacted to the APS modified quartz surface in a solution of pH = 12, where the surface was negatively charged and electrostatic repulsive interaction and low friction were present between the PNaMPS gel and the APS modified surface. It, however, did not change in a solution of pH = 2, where the surface was positively charged and electrostatic attractive interaction and very high friction were present between the PNaMPS gel and the APS modified surface. These results suggest the important role of water structure for small friction at the polymer gel/solid interface.  相似文献   

7.
Sum frequency generation (SFG) vibrational spectroscopy has been applied to investigate molecular responses of bovine serum albumin (BSA) molecules adsorbed at different interfacial environments. Molecular level and in situ SFG studies demonstrate that albumin molecules have different adsorption behaviors when contact with fused silica, polystyrene, and poly(methyl methacrylate). Adsorbed albumin molecules exhibit different structural changes when exposed to different chemical environments, including air, water, and hydrophobic solvents. This paper provides direct molecular insight into protein responses to different interfacial environments.  相似文献   

8.
Antimicrobial peptides (AMPs) selectively disrupt bacterial cell membranes to kill bacteria whereas they either do not or weakly interact with mammalian cells. The orientations of AMPs in lipid bilayers mimicking bacterial and mammalian cell membranes are related to their antimicrobial activity and selectivity. To understand the role of AMP-lipid interactions in the functional properties of AMPs better, we determined the membrane orientation of an AMP (MSI-78 or pexiganan) in various model membranes using sum frequency generation (SFG) vibrational spectroscopy. A solid-supported single 1,2-dipalmitoyl-an-glycero-3-[phospho-rac-(1-glycerol)] (DPPG) bilayer or 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (POPG) bilayer was used as a model bacterial cell membrane. A supported 1,2-dipalmitoyl-an-glycero-3-phosphocholine (DPPC) bilayer or a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer was used as a model mammalian cell membrane. Our SFG results indicate that the helical MSI-78 molecules are associated with the bilayer surface with ~70° deviation from the bilayer normal in the negatively charged gel-phase DPPG bilayer at 400 nM peptide concentration. However, when the concentration was increased to 600 nM, MSI-78 molecules changed their orientation to make a 25° tilt from the lipid bilayer normal whereas multiple orientations were observed for an even higher peptide concentration in agreement with toroidal-type pore formation as reported in a previous solid-state NMR study. In contrary, no interaction between MSI-78 and a zwitterionic DPPC bilayer was observed even at a much higher peptide concentration (~12,000 nM). These results demonstrate that SFG can provide insights into the antibacterial activity and selectivity of MSI-78. Interestingly, the peptide exhibits a concentration-dependent membrane orientation in the lamellar-phase POPG bilayer and was also found to induce toroidal-type pore formation. The deduced lipid flip-flop from SFG signals observed from lipids also supports MSI-78-induced toroidal-type pore formation.  相似文献   

9.
Sum frequency generation (SFG) vibrational spectroscopy was used to detect the presence of trifluoromethyl groups on the surface of 4-(trifluoromethyl)benzyl alcohol (TFMBA) in air. Supplementary data from infrared and Raman spectra were correlated to ab initio calculations by use of density functional theory (DFT) for TFMBA and three related compounds to reliably assign vibrational modes to the spectra. It was shown that strongly ordered CF3 groups dominate the surface of the TFMBA, and the vibrational modes of this functional group are strongly coupled to the benzene ring of the benzyl alcohol. This coupling, along with the SFG activity of the CF3 group, is removed with the insertion of an oxygen atom between the CF3 group and the benzene ring.  相似文献   

10.
The adsorption and oxidation of CO on monolayer films of cubic Pt nanoparticles synthesized by a modified solution-phase polyol process were examined by sum frequency generation (SFG) vibrational spectroscopy in total internal reflection (TIR) geometry. Extremely low incident laser power (approximately 5 microJ/pulse of infrared) yields sufficient SFG intensity in TIR geometry and reduces destructive interference. Because TIR-SFG spectroscopy does not require correction for bulk gas absorption, CO spectra can be collected over a wide pressure range (<1 mTorr up to 700 Torr). Poly(vinylpyrrolidone)-capped Pt nanoparticles deposited on single-crystal sapphire were monitored under high-pressure reaction conditions in a combined spectroscopy-catalytic reactor cell. The effect of the capping polymer on the position and intensity of the CO peak was studied before and after low-temperature calcination. The polymer decreased the amount of CO adsorption and caused a slight red-shift of the atop CO band relative to a surface treated in oxygen at 373 K. Oxidation rates were determined by measuring the intensity of the atop CO peak as a function of time in the presence of flowing oxygen. The activation energy (approximately 19.8 kcal/mol) determined from the SFG data is close to that obtained from gas chromatography (GC) measurements of CO oxidation rates at different temperatures. The SFG and GC results are in good agreement with published data for Pt(100) surfaces.  相似文献   

11.
Electrostatic interactions between negatively charged polymer surfaces and factor XII (FXII), a blood coagulation factor, were investigated by sum frequency generation (SFG) vibrational spectroscopy, supplemented by several analytical techniques including attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), quartz crystal microbalance (QCM), ζ-potential measurement, and chromogenic assay. A series of sulfonated polystyrenes (sPS) with different sulfonation levels were synthesized as model surfaces with different surface charge densities. SFG spectra collected from FXII adsorbed onto PS and sPS surfaces with different surface charge densities showed remarkable differences in spectral features and especially in spectral intensity. Chromogenic assay experiments showed that highly charged sPS surfaces induced FXII autoactivation. ATR-FTIR and QCM results indicated that adsorption amounts on the PS and sPS surfaces were similar even though the surface charge densities were different. No significant conformational change was observed from FXII adsorbed onto surfaces studied. Using theoretical calculations, the possible contribution from the third-order nonlinear optical effect induced by the surface electric field was evaluated, and it was found to be unable to yield the SFG signal enhancement observed. Therefore it was concluded that the adsorbed FXII orientation and ordering were the main reasons for the remarkable SFG amide I signal increase on sPS surfaces. These investigations indicate that negatively charged surfaces facilitate or induce FXII autoactivation on the molecular level by imposing specific orientation and ordering on the adsorbed protein molecules. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

12.
The vibrational sum frequency generation (SFG) spectra of the air-liquid interface of H2SO4-H2O solutions over a wide range of concentrations are measured in the SO stretching region (1000-1300 cm(-1)). The analogy of the concentration dependence of Raman and SFG is indicative of a nearly identical behavior of the first acid dissociation at the air-liquid interface as in the bulk.  相似文献   

13.
We have studied the interface between hexadecane droplets and sapphire substrates in water using infrared-visible sum frequency generation spectroscopy (SFG). At high pH and above the isoelectric point of the sapphire substrate, the hexadecane drop is repelled due to electrostatic forces. The SFG measurements are consistent with the observation that a thick layer of water is present between the oil and the sapphire substrate. Below the isoelectric point of the sapphire substrate, the hexadecane drops stick to the sapphire surface. Surprisingly, the SFG results show the presence of a thin layer of water between hexadecane drop and the sapphire substrate. At this contact interface, we observe contributions to the SFG signal from both the hexadecane/water and water/sapphire interfaces. The reasons for the presence of a thin water layer with adhesive contact can be explained due to weaker repulsive double layer and the attractive van der Waals interactions.  相似文献   

14.
E L Hommel  G Ma  H C Allen 《Analytical sciences》2001,17(11):1325-1329
An important advance in surface science has been the evolution of sum frequency generation to the application of studying surface structure and chemistry of liquid surfaces at the molecular-level by probing the vibrational signatures of surface molecules. Recently, broad-bandwidth sum frequency generation (BBSFG) spectroscopy has become an important tool for investigating gas-solid interfaces. BBSFG spectroscopy allows, theoretically, a surface sum frequency spectrum to be acquired within one pulse of the laser. In this paper, the viability of BBSFG to study inherently small nonlinear response interfaces and the time-resolving capability of this surface-selective technology are demonstrated. Presented here are the first published accounts of spectra from a liquid surface utilizing the broad-bandwidth sum frequency technology with acquisition times as low as 500 milliseconds.  相似文献   

15.
This article summarizes the computational analysis of the vibrational sum frequency generation (SFG) spectroscopy with molecular dynamics simulation. The analysis allows direct comparison of experimental SFG spectra and microscopic interface structure obtained by molecular simulation, and thereby obviates empirical fitting procedures of the observed spectra. In the theoretical formulation, the frequency-dependent nonlinear susceptibility of an interface is calculated in two ways, based on the energy representation and time-dependent representation. The application to aqueous interfaces revealed a number of new insights into the local structure of electrolyte interfaces and the interpretation of SFG spectroscopy.  相似文献   

16.
Sum frequency generation (SFG) vibrational spectroscopy has been proved to be a powerful technique which substantially impacts on many research areas in surface and interfacial sciences. This paper reviews the recent progress of applying this nonlinear optical technique in the studies of polymer surfaces and interfaces. The theoretical background of SFG is introduced first. Current applications of SFG in polymer science are then described in more detail to demonstrate the significance of this technique. Finally, a short summary is presented on this relatively new but widely applicable spectroscopic technique.  相似文献   

17.
The nonlinear optical technique of sum frequency generation (SFG) vibrational spectroscopy has been used for the first time to study CdS nanoparticle/arachidic acid multilayer structures. Using a combination of per-deuterated and per-protonated arachidic acid, it is possible to study individual layers anywhere within the film, buried or on the surface. Before reaction with H2S all layers are highly ordered, but after the reaction the layers become highly disordered, except for the surface layer, which remains well ordered. This sheds new light on the structure and stability of these films and shows that SFG can provide unique structural information.  相似文献   

18.
Structural deformations of lipid hybrid bilayer membranes induced by signal peptideless (SPL) proteins have been studied for the first time using the inherently surface specific nonlinear optical technique of sum frequency generation vibrational spectroscopy. Specifically, deformations of 1,2-distearoylphosphatidylglycerol(DSPG) membranes induced by interaction with FGF-1, a SPL protein which is released asa function of cellular stress through a nonclassical pathway, have been investigated. FGF-1 was found to induce lipid alkyl chain deformations in previously highly ordered DSPG membranes at the extremely low concentration of 1 nM at 60 degrees C. The deformation process was shown to exhibit a degree of reversibility upon removal of the protein by rinsing with buffer solution.  相似文献   

19.
The adsorption of sodium dodecyl sulfate (SDS) from aqueous solution onto a calcium fluoride substrate (CaF(2)), in the presence of polyethylene glycol (PEG) of different molecular weights, has been investigated using the interface specific nonlinear optical technique of sum frequency generation (SFG) vibrational spectroscopy. Spectra of adsorbed SDS (in the C-H stretching region) were recorded at the surface of a CaF(2) prism in contact with SDS solutions at concentrations up to the cmc (8 mM) of the pure surfactant and in contact with binary solutions containing SDS and PEG with molecular weights from 400 to 12 000. In contrast with SFG spectra from the same combinations of surfactant and polymer on a hydrophobic surface, there was no evidence of spectra arising from the actual polymer adsorbed on CaF(2) at any polymer molecular weight either in the absence or presence of surfactant. However, there was indirect evidence for the presence of adsorbed polymer from changes in the SDS SFG spectra in the presence of polymer compared with spectra when the polymer was absent. The SFG spectra of SDS at 0.8 mM were closely similar to each other at all polymer molecular weights and different from the spectra in the absence of the polymer. The spectral differences between the polymer present and polymer absent was much smaller when the solution concentration of surfactant was 8 mM.  相似文献   

20.
Molecular structures of poly(n-butyl methacrylate) (PBMA) at the PBMA/air and PBMA/water interfaces have been studied by sum frequency generation (SFG) vibrational spectroscopy. PBMA surfaces in both air and water are dominated by the methyl groups of the ester side chains. The average orientation and orientation distribution of these methyl groups at the PBMA/air and PBMA/water interfaces are different, indicating that surface restructuring occurs when the PBMA sample contacts water. Analysis shows that the orientation distribution of side chain methyl groups on the PBMA surface is narrower in water than that in air, indicating that the PBMA surface can be more ordered in water. To our knowledge, this is the first time that quantitative comparisons between molecular surface structures of polymers in air and in water have been made. Two assumptions on the orientation distribution function, including a Gaussian distribution and a formula based on the maximum entropy approach, are used in the analysis. It has been found that the orientation angle distribution function deduced by the Gaussian distribution and the maximum entropy distribution are quite similar, showing that the Gaussian distribution is a good approximation for the angle distribution. The effect of experimental error on the deduced orientational distribution is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号