首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The synthesis of functionalized submicrometer magnetic latex particles is described as obtained from a preformed magnetic emulsion composed of organic ferrofluid droplets dispersed in water. Composite (polystyrene/γ‐Fe2O3) particles were prepared according to a two‐step procedure including the swelling of ferrofluid droplets with styrene and a crosslinking agent (divinyl benzene) followed by seeded emulsion polymerization with either an oil‐soluble [2,2′‐azobis(2‐isobutyronitrile)] or water‐soluble (potassium persulfate) initiator. Depending on the polymerization conditions, various particle morphologies were obtained, ranging from asymmetric structures, for which the polymer phase was separated from the inorganic magnetic phase, to regular core–shell morphologies showing a homogeneous encapsulation of the magnetic pigment by a crosslinked polymeric shell. The magnetic latexes were extensively characterized to determine their colloidal and magnetic properties. The desired core–shell structure was efficiently achieved with a given styrene/divinyl benzene ratio, potassium persulfate as the initiator, and an amphiphilic functional copolymer as the ferrofluid droplet stabilizer. Under these conditions, ferrofluid droplets were successfully turned into superparamagnetic polystyrene latex particles, about 200 nm in size, containing a large amount of iron oxide (60 wt %) and bearing carboxylic surface charges. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2642–2656, 2006  相似文献   

2.
A hybrid emulsion polymerization was formulated for synthesizing Fe3O4/polystyrene composite latex. This system, containing binary droplets that are magnetic (Mag)‐droplets with a diameter of 100–200 nm and styrene (St)‐droplets with a diameter of 3–4 μm, was obtained by mixing Mag‐miniemulsion and St‐macroemulsion. With extremely low surfactants concentration (?critical micelle concentration, CMC), the nucleated loci are selectively controlled in the Mag‐droplets, as the result of smaller droplet size and larger surface ratio. Both water‐soluble potassium persulfate (KPS) and oil‐soluble 2,2′‐azobis(2‐isobutyronitrile) was adopted to initiate the polymerization. In the presence of KPS, magnetic polystyrene latices with particles size of 60–200 nm, narrow size distribution, and high magnetite content (86 wt % measured by TGA) were attained successfully. The synthesized magnetic Fe3O4/polystyrene latices assembled into well‐ordered hexagonal structure in the surface of a carbon supported copper grid. The influence of various parameters on various aspects of the as‐synthesized Fe3O4/polystyrene was investigated in detail: type of initiator on composite morphology, feed ratio of Mag‐miniemulsion and St‐macroemulsion on magnetite content, and hydrophobic agent or amount of surfactant on size and size distribution. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5285–5295, 2007  相似文献   

3.
The polymerization of styrene in three-component oil-in-water microemulsions made with the cationic surfactant dodecyltrimethylammonium bromide is studied by dilatometry and quasielastic light scattering as a function of type and concentration of initiator. Fast polymerization rates, high conversions, and high molecular weight polymers are achieved with both oil-soluble (AIBN) and water-soluble (potassium persulfate) initiators. The rate of polymerization shows initiation and termination intervals, but no constant-rate interval is observed. Stable monodisperse microlatexes are obtained with both types of initiators. For both AIBN and potassium persulfate, polystyrene molecular weight is proportional to initiator concentration [I]–0.4 and particle radii decrease as [I]–0.2. Polymerization initiation occurs in or at the microemulsion droplets, and polymer particles grow by recruiting monomer and surfactant from uninitiated swollen micelles.  相似文献   

4.
Initiation of polymerization in styrene oil-in-water microemulsions by water-soluble potassium persulfate of oil-soluble 2,2′-azobis-(2-methyl butyronitrile) at 70°C gave stable latexes which were bluish and less translucent than the original microemulsions. The effects of initiator concentration, polymerization temperature, and monomer concentration on the kinetics, particle size distributions, and molecular weight distributions were investigated. The kinetics of polymerization were measured by dilatometry. In all cases, the polymerization rate shows only two intervals, which increased to a maximum and then decreased. There was no apparent constant rate period and no gel effect. A longer nucleation period was found for polymerizations initiated by potassium persulfate as compared to 2,2′-azobis-(2-methyl butyronitrile). The small latex particle size (20–30 nm) and high polymer molecular weight (1–2 × 106) implies that each latex particle consists of two or three polystyrene molecules. The maximum polymerization rate and number of particles varied with the 0.47 and 0.40 powers of potassium persulfate concentration, and the 0.39 and 0.38 powers of 2,2′-azobis-(2-methyl butyronitrile) concentration, respectively. This is consistent with the 0.4 power predicted by Smith–Ewart Case 2 kinetics. Microemulsion polymerizations of styrene–toluene mixtures at the same oil-water phase ratio gave lower polymerization rates and lower molecular weights, but the same latex particle size as with styrene alone. A mechanism is proposed, which comprised initiation and polymerization in the microemulsion droplets, by comparing the kinetics of microemulsion polymerization with conventional emulsion and miniemulsion polymerization systems.  相似文献   

5.
李昊阳  单国荣 《高分子学报》2008,(12):1175-1180
以甲基丙烯酸十二氟庚酯(DFMA)、甲基丙烯酸甲酯(MMA)、丙烯酸丁酯(BA)为共聚单体,不加任何传统的助稳定剂进行细乳液聚合.在共聚体系中,由于DFMA在初期反应生成的聚合物中占有较高比例,初期形成的少量低聚物可以起到助稳定剂作用,因此DFMA作为反应单体的同时,又可以原位生成助稳定剂,维持单体液滴或乳胶粒子的稳定,以细乳液聚合的方式进行聚合.分别采用油溶性引发剂(AIBN)和水溶性引发剂(KPS)引发聚合,考察细乳液聚合过程中乳胶粒子粒径的变化规律,粒径由初始时刻的400nm左右减少到80nm左右,最终与使用传统的助稳定剂得到的粒径相当.提出了原位生成助稳定剂的细乳液聚合机理,并使用交联剂验证了提出的原位生成助稳定剂的细乳液聚合机理.  相似文献   

6.
Polymerization of styrene miniemulsions, prepared using a mixed emulsifier system comprising sodium lauryl sulfate and cetyl alcohol, was carried out using both water-soluble (potassium persulfate) and oil-soluble [2,2′-azobis-(2-methyl butyronitrile)] initiators. The effects of variation of initiator concentration, polymerization temperature, and added inhibitor on the kinetics and particle-size distributions were investigated to obtain more quantitative evidence concerning the locus of polymerization in miniemulsion systems. Experimental results for the kinetics and particle-size distributions clearly showed that monomer droplets became the main source of polymer particle formation. This was attributed to the fact that stable emulsions with droplet diameters in the range of 0.05 to 0.15 μm were produced using this mixed-emulsifier system. In this size range, droplet initiation could effectively compete with other mechanisms due to their large surface area. Their size was indeed similar to the corresponding latex particle size obtained after polymerization.  相似文献   

7.
To clarify the growth mechanism of polystyrene (PSL) particles in the soap-free polymerization, characteristics of not only particles but also polymeric materials floating in the bulk were investigated on the molecular scale by using atomic force microscope (AFM), where a cationic initiator V-50 is used to make the formed polymeric materials transfer on the mica plate in sampling. Our main attention here is to know the reason why the particle size increases with increasing initiator concentration in the production of PSL particles. The following are found. (1) As far as the initiators and monomers remain in the bulk solution, the polymeric materials are born in the bulk continuously, because of the slow decomposition rate of initiators. (2) The growth of particles at the early stage of t(r) > or = 0.75 h is considered to be attributable mainly to the particle swelling by absorbing monomers from the bulk. The rapid growth at the intermediate stage is due to the deposition of polymeric materials in the bulk on the particle surface and their simultaneous swelling by monomers in the bulk. (3) The reason why the particle size increases with increasing concentration of initiator is that the growth process is controlled by the deposition rate of polymeric materials in the bulk whose amount increases with the initiator concentration. (4) The particle size and the smoothness of particle surface depend on the relative concentration of initiators and monomers remained.  相似文献   

8.
 Nano-sized polyacrylonitrile (PAN) particles were prepared under the catalytic effect of in situ developed CoCl2/EDTA complex with ammonium persulfate as the initiator in the absence of any added emulsifier. The emulsion polymerization was studied at varying concentrations of the initiator, monomer, complex and solvent over a temperature range of 30-70oC. The overall activation energy (Ea, 49.79 kJ/mol), energy of dissociation of initiator (Ed, 82.68 kJ/mol), number of micelles (0.163 x 1018) and the viscosity average molecular weight of the polymer were computed. The distribution of particle sizes was determined by transmission electron microscopy (TEM). It was found that the oil-in-water polymerization was stabilized by the presence of the CoCl2/EDTA in situ complex reducing the particle size into the nano order. The average diameters of PAN nano particles, obtained by TEM, were in the range of 50–150 nm at the maximum conversion. The experimental particle size was mainly dependent on the concentration of the complex and temperature.  相似文献   

9.
复合微乳液聚合制备P(MMA-UA)纳米乳胶粒子的研究   总被引:14,自引:0,他引:14  
将聚氨酯预聚体可聚合乳化剂 (APUA)和甲基丙烯酸甲酯 (MMA)的复合微乳液体系 ,分别用水溶性过硫酸钾 (K2 S2 O8)和油溶性偶氮二异丁腈 (AIBN)作引发剂 ,进行微乳液聚合研究 ,制备了P(MMA UA)复合纳米乳胶粒子 .研究了APUA用量、聚合温度对聚合动力学的影响 ;用透射电子显微镜 (TEM)观察了不同乳化剂浓度及引发剂体系对胶粒形态、大小及分布的影响 .结果表明 ,用可聚合乳化剂APUA可制得稳定性很好的P(MMA UA)纳米级核 壳型乳胶粒子 ,乳胶粒径在 5 0nm左右 .随着乳化剂用量增加 ,粒子变小 ;不同类型的引发剂对胶乳的性质有较大影响 ,以APUA为乳化剂 ,K2 S2 O8为引发剂 ,在聚合反应过程中或在聚合反应后的放置中 ,会出现P(MMA UA)的纳米水凝胶 (Nanogel)现象 .  相似文献   

10.
The encapsulation of inorganic particles with polymers is desirable for many applications in order to improve the stability of the encapsulated products and disperse ability in different media. Colloidal particles with magnetic properties have become increasingly important both technologically and for fundamental studies. This is due to their tunable anisotropic. In the absence of an applied magnetic field, the particles have isotropic sphere dispersion, whereas in an external magnetic field the particles form anisotropic structures. Here, latexes containing nanocomposite particles of styrene-butyl acrylate/Fe3O4 with core-shell structure were prepared through miniemulsion polymerization technique. Magnetic composite nanospheres with high magnetic content were synthesized through miniemulsion polymerization using a new process based on a three-steps preparation route including two miniemulsion processes: (1) preparing a dispersion of oleic acid coated magnetite particles in water; (2) mixing of modified magnetite particles with styrene/butyl acrylate in the presence of sodium dodecyl sulfate (SDS), sorbitane mono oleate (Span 80), hexadecane (HD) and (3) miniemulsification of the modified Fe3O4 into the monomer droplets to reach to complete encapsulation. Subsequent polymerization generated magnetic nanocomposite spheres. Hence, the copolymerization reaction was performed on the surface of such particles in order to obtain core-shell morphology for these nanoparticles, which were characterized by several techniques such as TEM, SEM, DLS, TGA, VSM and FT-IR. The magnetic copolymer particles with diameter of 120-170 nm were obtained. The effect of several parameters such as magnetite, surfactants and hydrophobe amounts on the stability, particle size and magnetization were investigated and also optimized.  相似文献   

11.
采用化学共沉淀方法合成了Fe3O4纳米粒子, 用3-甲基丙烯酰氧基丙基三甲氧基硅烷(3-MPS)对其进行表面接枝修饰, 然后以苯乙烯(St)为单体, 过氧化苯甲酰(BPO)为引发剂, 4-羟基-2,2,6,6-四甲基哌啶-1-氧化物自由基(HTEMPO·)为稳定自由基介质, 采用可控/“活性”自由基聚合技术在修饰后的Fe3O4纳米粒子表面原位引发聚合, 制备了粒径小、分布窄、磁含量高的磁性聚苯乙烯(PS)纳米粒子. X射线衍射(XRD)研究表明, 所合成的Fe3O4粒子为尖晶石结构. 凝胶渗透色谱(GPC)分析表明, 聚苯乙烯的分子量与反应时间呈较好的线性关系. 透射电镜(TEM)观察表明, 所制备的磁性聚苯乙烯纳米粒子的粒径在20-30 nm之间. 热重(TG)分析得到磁性聚苯乙烯纳米粒子的磁含量为62.6%. 振动样品磁强计(VSM)测试结果表明, 磁性聚苯乙烯纳米粒子的比饱和磁化强度为31.7 emu·g-1, 呈现单磁畴结构.  相似文献   

12.
丙烯酸聚合物及其与其它水性单体的共聚物是一类非常重要的水溶性高分子化合物, 具有许多优异的性能, 广泛应用于环保、 石油化工、 造纸和食品卫生等行业[1]. 丙烯酸聚合物一般采用水溶液、 反相悬浮及反相乳液法制备, 但这些方法存在诸如反应体系粘度高, 不易散热、 使用不方便, 由于使用有机溶剂和表面活性剂易对环境造成二次污染等问题[2].近些年, 由日本率先研制开发的以水为溶剂分散型高浓度﹑高分子量的新型水溶性高分子产品, 克服了传统合成方式和产品剂型等诸多问题, 极大地拓宽了其使用领域[3~5]. 有关水介质中水溶性单体分散聚合的研究报道很少[6~8].而针对于丙烯酸在水介质中的研究报道则更少[9] , 大部分工作为专利文献.  相似文献   

13.
Soap-free emulsion polymerization of styrene using oil-soluble initiators and electrolytes was investigated to synthesize micron-sized polystyrene particles. It was clear that an oil-soluble initiator, such as AIBN, worked like a water-soluble initiator in soap-free emulsion polymerization of styrene to prepare monodispersed particles with negative charges, probably because of the polarization of the electron-attractive functional groups decomposed from the initiators and the pi electron cloud of benzene in a styrene monomer. The addition of an electrolyte enabled secondary particles to effectively promote hetero-coagulation for particle growth by reduction of an electrical double layer and prevention of self-growth. Changing the concentration and type of electrolyte enabled us to control the size up to 12 μm in soap-free emulsion polymerization of styrene using AIBN. Conventionally, organic solvents and surfactants have been used to prepare micron-sized polymeric particles, but this method enabled the synthesis of micron-sized polymeric particles in water using electrolytes without surfactants.  相似文献   

14.
In order to clarify the kinetic role of oil‐soluble initiators in microemulsion polymerization, the oil‐in‐water (O/W) microemulsion polymerizations of styrene are carried out using four kinds of azo‐type oil‐soluble initiators with widely different water‐solubility. The results are compared with those observed when a water‐soluble initiator, potassium persulfate (KPS) is used. For all the oil‐soluble initiators used, the molecular weight of polymers and the average size of polymer particles do not change with the monomer conversion and the initial initiator concentration. The monomer conversion is expressed as a function of ri0.5t, where ri is the rate of radical generation in the whole reaction system and t is the reaction time. These characteristics are quite the same as those observed when KPS is used as an initiator. When the polymerizations are carried out with the rate of radical generation in the whole reaction system fixed at the same value, the rates of polymerization are almost the same for all the oil‐soluble initiators employed, irrespective of their water‐solubility, but are significantly lower (ca. 1/3) than that with KPS. Then, the following conclusions are given: (1) The radicals generated not only in the aqueous phase, but also in the micelle and polymer particle phase are almost equally effective for the polymerization. However, (2) only a small portion (ca. 1/9) of the radicals generated in both phases participate in the polymerization. (3) Bimolecular termination of a growing radical in the polymer particle with an entering radical and with a pair of radicals generated in the polymer particles is negligible, and hence, the molecular weight of polymers is determined only by chain transfer to monomer.  相似文献   

15.
细乳液聚合法制备磁性复合微球及其表征   总被引:16,自引:7,他引:16  
在制备超细Fe3O4 磁性粒子的基础上 ,以 3种低分子量聚合物Disperbyk 1 0 6、Disperbyk 1 0 8和Disperbyk 1 1 1为Fe3O4 微粒在单体相中的分散稳定剂 ,采用细乳液聚合法制备了平均粒径为 3 40nm的PS Fe3O4 磁性复合微球 .详细研究了分散剂种类对细乳液聚合制备磁性复合微球的影响 ,并采用XRD、TGA和TEM等手段对磁性复合微球的形态、结构及磁响应性等进行了表征 .实验结果证明分散剂的选择对磁性复合微球的成功制备起着至关重要的作用 ,兼具酸性和碱性功能基的分散剂Disperbyk 1 0 6具有更好的分散和稳定效果 .TEM结果表明 ,所制备的复合微球具有一些缺陷 ,而缺陷处往往是Fe3O4 磁性粒子聚集的地方  相似文献   

16.
ZnO/polystyrene composite particles were synthesized by Pickering emulsion polymerization. ZnO nanoparticles were first prepared by reaction of zinc acetate and sodium hydroxide in ethanol medium. Then different amount of styrene monomer was emulsified in water in the presence of ZnO nanoparticles either by mechanical stirring or by sonication, followed by polymerization of styrene. Two kinds of initiators were used to start the polymerization, azobisisobutyronitrile (AIBN) and potassium persulfate (KPS). The X-ray diffraction pattern verified the crystal structure of ZnO and FT-IR spectra evidenced the existence of ZnO and polystyrene (PS) in ZnO/polystyrene composite particles. Different morphologies were observed for the composite particles when using different initiators. From TEM photographs, AIBN-initiated system produced mainly core-shell composite particles with PS as core and ZnO as shell, while KPS-initiated system showed both composite particles and pure PS particles. Two schemes of reaction mechanism were proposed to explain the morphologies accordingly. Both systems of composite particles showed good pH adjusting ability.  相似文献   

17.
In this study, the microemulsion and emulsion polymerization of styrene at 70 degrees C in the presence of sodium dodecyl sulfate (SDS, surfactant) and potassium persulfate (KPS, initiator) was conducted under microwave radiation. Laser light scattering was used to characterize the resultant polystyrene latex particles formed at different polymerization stages. The influence of the initial emulsion composition, that is, the SDS, KPS, and styrene concentrations, on the final particle size led us to a simple modified structural model in which we considered the stabilization effects of both the surfactant and the ionic end groups generated from the initiator. This model extended the application of the previous Wu plot from microemulsion polymerization to emulsion polymerization. Using this model, we were not only able to control the particle size but were also able to predict the monomer concentration dependence of the number of the resultant latex particles and the effect of diluting the reaction mixture on the resultant particle size.  相似文献   

18.
The encapsulation of seed polymer particles coated by anionic iron oxide nanoparticles has been investigated using N-isopropylacrylamide as a main monomer, N,N-methylene bisacrylamide as a crosslinking agent, itaconic acid as a functional monomer and potassium persulfate as an anionic initiator. The magnetic latexes obtained have been characterized with regard to particle size, iron oxide content and electrophoretic mobility. All these properties have been examined by varying several polymerization parameters: reaction medium, monomer(s) and crosslinking agent concentrations, nature of seed latexes and type of polymerization (batch versus shot process). The magnetic content in the polymer microspheres strongly depends on the polymerization procedure (i.e., encapsulation process) and varies between 6 and 23 wt%, and monodisperse magnetic polymer particles were obtained. Received: 28 December 1999 Accepted in revised form: 15 June 1999  相似文献   

19.
Composite microspheres of core-shell type were prepared by a seeded polymerization using monodispersed polystyrene seed latex (Ps) combined with an in situ dispersion of magnetite (Fe3O4) fine particles. The heterogeneous polymerization was carried out in aqueous dispersions of the Fe3O4 particles modified with sodium oleate. All the synthetic processes were carried out in a wet state to avoid serious agglomeration. The morphology of the composite particle and the size distribution were examined to discuss the effects on the polymerization parameters, such as monomer concentration, type and concentration of an initiator, magnetite particle concentration and the method of surface modification of Fe3O4.  相似文献   

20.
We describe the synthesis of several different polycarbonate particles by miniemulsion polymerization. The monomers were allylmethyl carbonate (AlMeC), di(ethylene glycol) bisallylcarbonate (DBAC), and 4‐vinyl‐1,3‐dioxan‐2‐one [vinyl ethylene carbonate (VEC)]. For these polymerizations, higher monomer conversions were obtained with oil‐soluble initiators (azobisisobutyronitrile and benzoyl peroxide) than with a water‐soluble initiator (potassium persulfate). Benzoyl peroxide was particularly effective in yielding particles with a narrow size distribution. Although increasing amounts of a surfactant (sodium dodecyl sulfate) led to smaller particles, the choice of the monomer was the major determinant. For example, in polymerization reactions carried out at 85 °C with benzoyl peroxide as the initiator and with otherwise identical recipes, we obtained particle sizes of 181 nm with AlMeC, 296 nm with VEC, and 203 nm with DBAC. Fluorescent particles were synthesized with comonomers based on the benzothioxanthene nucleus. Because the dyes had poor solubility in the monomers, it was necessary to include typically 20 wt % bromobenzene or dichlorobenzene based on the monomer in the miniemulsion reaction mixture. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1999–2009, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号