首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The migration behavior of cationic solutes and influences of the interactions of cationic solutes with sodium dodecyl sulfate (SDS) on the formation of micelles and its critical micelle concentration (CMC) were investigated by capillary electrophoresis at neutral pH. Catecholamines and structurally related compounds, including epinephrine, norepinephrine, dopamine, norephedrine, and tyramine, which involve different extents of hydrophobic, ionic and hydrogen-bonding interactions with SDS surfactant, are selected as cationic solutes. The dependence of the effective electrophoretic mobility of cationic solutes on the concentration of surfactant monomers in the premicellar region provides direct evidence of the formation of ion-pairs between cationic solutes and anionic dodecyl sulfate monomers. Three different approaches, based on the variations of either the effective electrophoretic mobility or the retention factor as a function of surfactant concentration in the premicellar and micellar regions, and the linear relationship between the retention factor and the product of a distribution coefficient and the phase ratio, were considered to determine the CMC value of SDS micelles. The suitability of the methods used for the determination of the CMC of SDS with these cationic solutes was discussed. Depending on the structures of cationic solutes and electrophoretic conditions, the CMC value of SDS determined varies in a wide concentration range. The results indicate that, in addition to hydrophobic interaction, both ionic and hydrogen-bonding interactions have pronounced effects on the formation of SDS micelles. Ionic interaction between cationic solutes and SDS surfactant stabilizes the SDS micelles, whereas hydrogen-bonding interactions weakens the solubilization of the attractive ionic interaction. The elevation of the CMC of SDS depends heavily on hydrogen-bonding interactions between cationic solutes and SDS surfactant. Thus, the CMC value of SDS is remarkably elevated with catecholamines, such as epinephrine and norepinephrine, as compared with norephedrine. In addition, the effect of methanol content in the sample solution of these cationic solutes on the CMC of SDS was also examined.  相似文献   

2.
The interaction of Procaine hydrochloride (PC) with cationic, anionic and non-ionic surfactants; cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS) and triton X-100, were investigated. The effect of ionic and non-ionic micelles on solubilization of Procaine in aqueous micellar solution of SDS, CTAB and triton X-100 were studied at pH 6.8 and 29°C using absorption spectrophotometry. By using pseudo-phase model, the partition coefficient between the bulk water and micelles, Kx, was calculated. The results showed that the micelles of CTAB enhanced the solubility of Procaine higher than SDS micelles (Kx = 96 and 166 for SDS and CTAB micelles, respectively) but triton X-100 did not enhanced the solubility of drug because of weak interaction with Procaine. From the resulting binding constant for Procaine-ionic surfactants interactions (Kb = 175 and 128 for SDS and CTAB surfactants, respectively), it was concluded that both electrostatic and hydrophobic interactions affect the interaction of surfactants with cationic procaine. Electrostatic interactions have a great role in the binding and consequently distribution of Procaine in micelle/water phases. These interactions for anionic surfactant (SDS) are higher than for cationic surfactant (CTAB). Gibbs free energy of binding and distribution of procaine between the bulk water and studied surfactant micelles were calculated.   相似文献   

3.
The differential excess enthalpy of mixed micelle formation was measured at different temperatures by mixing nonionic hexa(ethylene glycol) mono n-dodecyl ether with anionic sodium dodecyl sulfate or cationic dodecylpyridinium chloride. The experimental data were obtained calorimetrically by titrating a concentrated surfactant solution into a micellar solution of nonionic surfactant. The composition and the size of the mixed nonionic/ionic micelles at different surfactant concentrations were also determined. Pronounced differences in both composition and excess enthalpy were found between the anionic and the cationic mixed system. For both systems, the excess enthalpies become more exothermic with increasing temperature, but for the anionic mixed system an additional exothermic contribution was found which was much less temperature dependent. Temperature dependence of the excess enthalpy was attributed to the effect of the ionic headgroup on the hydration of the ethylene oxide (EO) groups in the mixed corona. Ionic headgroups located in the ethylene oxide layer cause the dehydration of the EO chains resulting in an additional hydrophobic contribution to the enthalpy of mixing. A high affinity of sodium dodecyl sulfate for nonionic micelles and an extra exothermic and less temperature dependent contribution to the excess enthalpy found for the SDS-C(12)E(6) system might be attributed to specific interactions (hydrogen bonds) between the sulfate headgroup and the partly dehydrated EO chain.  相似文献   

4.
The photophysics and photochemistry of 1,8-acridinedione dyes, which are analogues of reduced nicotinamide adenine dinucleotide (NADH), are studied in anionic and cationic micelles. Acridinedione dyes (ADDs) are solubilized in micelles at the micelle-water interface and are in equilibrium between the aqueous and micellar phase. The binding of the ADDs with micelles is attributed to hydrophobic interactions and the binding constants are determined with steady-state and time-resolved techniques. Nanosecond laser flash photolysis studies are carried out in aqueous, anionic, and cationic micellar solutions. The ADD undergoes photoionization in the excited state to give a solvated electron. The solvated electron reacts with the ADD to give an anion radical. In anionic micelles, the yield of the solvated electron increases because of the efficient separation of the cation radical and the electron. Cation radicals derived from the photooxidation of ADDs are involved in keto-enol tautomerization. Under acidic conditions, an enol radical cation of the acridinedione dye is formed from the keto form of the cation radical by intramolecular hydrogen atom transfer. In cationic micelles, due to electrostatic attraction, the electron cannot escape from the micelle and recombination of the cation radical and the electron results in the formation of a triplet state. For the first time, a solvated electron is observed in the laser flash photolysis of ADDs in anionic micelles. The photoionization of ADDs depends on the excitation wavelength and is biphotonic at 355 nm and monophotonic at 248 nm. From the results with this NADH model compound, the sequential electron-proton-electron transfer oxidation of NADH is confirmed and the nature of the intermediates involved in the oxidation is unraveled; these intermediates are found to depend on the pH value of the medium.  相似文献   

5.
Polymeric micelles showing charge selective and pH‐reversible encapsulation are reported. It is found that for a guest mixture of organic cationic–anionic dyes, a unimolecular micelle (PEI@PS) with a polystyrene (PS) as shell and a hyperbranched polyethylenimine (PEI) as core can exclusively entrap the anionic one; and a physical micelle consisting of brush‐like macromolecule (mPS‐PAA) with multi PS‐b‐polyacrylic acid (PAA) as grafts can exclusively entrap the cationic one. A covalent micelle (PEI‐COOH@PS) bearing a zwitterionic core, that is, PEI covalently derived with dense carboxylic acids, can undergo highly pH‐switchable charge selective and pH‐reversible encapsulation. Both PEI@PS and mPS‐PAA can be used for highly charge‐selective separation of ionic dyes but the pH‐reversibility of the encapsulation is relatively limited. In contrast, PEI‐COOH@PS is less effective to differentiate the anionic–cationic dyes but is well recyclable. A physical micelle obtained from the self‐assembly of PEI and mPS‐PAA shows similar property to PEI‐COOH@PS. The combination of these micelles in mixture separation can enhance the recyclability of the micelle and widen the spectrum of mixtures that can be well separated. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
Surfactants of practical interest are invariably mixtures of different types. In this study, mixtures of sugar-based n-dodecyl-beta-D-maltoside with cationic dodecyltrimethylammonium bromide, anionic sodium dodecylsulfate, and nonionic pentaethyleneglycol monododecyl ether in solution, with and without supporting electrolyte, have been studied using surface tension and fluorescence spectroscopic techniques. Interaction parameters and mole fraction of components in mixed micelles were calculated using regular solution theory. The magnitude of interactions between n-dodecyl-beta-D-maltoside and other surfactants followed the order anionic/nonionic > cationic/nonionic > nonionic/nonionic mixtures. Since all surfactants have the same hydrophobic groups, strengths of interactions are attributed to the structures of hydrophilic headgroups. Electrolyte reduced synergism between n-dodecyl-beta-D-maltoside and ionic surfactant due to charge neutralization. Industrial sugar-based surfactant, dodecyl polyglucoside, yielded results similar to that with dodecyl maltoside, implying that tested commercial alkyl polyglucosides are similar to the pure laboratory samples in synergistic interactions with other surfactants. Fluorescence study not only supported the cmc results using tensiometry, but showed that interfaces of all the above mixed micelle/solution interfaces are mildly hydrophobic. Based on these results, an attempt is made to discover the nature of interactions to be a combination of intermolecular potential energies and free energy due to packing of surfactant molecules in micelles.  相似文献   

7.
The UV–vis absorption properties of azo dyes are known to exhibit a variation with the polarity and acidity of the dye environment. The spectral properties of a series of anionic azo dyes were characterized to further probe the interaction of these dyes with two types of surfactant aggregates: (1) the spherical micelles formed in aqueous solution by alkyltrimethylammonium bromide (CnTAB) surfactants with n = 10–16 and (2) the unilamellar vesicles spontaneously formed in water from binary mixtures of the oppositely-charged double-tailed surfactants cationic didodecyldimethylammonium bromide (DDAB) and anionic sodium dioctylsulfosuccinate (Aerosol OT or AOT). The observed dye spectra reflect the solvatochromic behavior of the dyes and suggest the location and orientation of the dye within the surfactant aggregates. Deconvolution of the overall spectra into sums of Gaussian curves more readily displays any contributions of tautomeric forms of the azo dyes resulting from intramolecular hydrogen bonding. The rich variation in UV/vis absorption properties of these anionic azo dyes supports their use as sensitive tools to explore the nanostructures of surfactant aggregates.  相似文献   

8.
In this study, micelles prepared from distearoylphosphatidylethanolamine with covalently attached poly(ethylene) glycol) (PEG) of molecular weight 2000 (DSPE-PEG-2000) were employed in micellar electrokinetic chromatography (MEKC) as pseudostationary phases. Since DSPE-PEG-2000 contains long hydrophobic alkyl chains, an anionic phosphate group, and hydrophilic PEG chains, the prepared micelles are expected to provide a characteristic retention behavior for both neutral and ionic compounds. As a typical example, a baseline separation of phenol and 2-naphthol was successfully achieved by using the DSPE-PEG-2000 micelles as a background electrolyte for MEKC; such success clearly shows that the micelles can retain electrically neutral compounds. The MEKC separations of anionic and cationic compounds with a DSPE-PEG-2000 micellar solution and the enantioseparation of binaphthyl compounds with mixed micelles containing bile salt are also discussed.  相似文献   

9.
The interaction of the antioxidant Rutin with the radical DPPH (2,2-diphenyl-1-picrylhydrazyl) in presence of cationic (CTAB, TTAB, DTAB), non-ionic (Brij78, Brij58, Brij35), anionic (SDS) and mixed surfactant systems (CTAB-Brij58, DTAB-Brij35, SDS-Brij35) has been followed by spectrophotometric and tensiometric methods to evaluate the DPPH radical scavenging activity (RSA) of Rutin in these model self-assembled structures. The results show that the solubilization capacity of various single surfactant systems for both DPPH as well as Rutin followed the order cationics > non-ionics > anionic. The radical scavenging activity of Rutin in the solubilized form was higher within ionic micelles than in non-ionic micelles. However, the antioxidant exhibited enhanced activity for the radical in mixed cationic-non-ionic micelles compared with any of the single component micelles. In contrast, anionic-non-ionic mixed micelles modulated the activity of Rutin in-between that seen for pure anionic and non-ionic micelles only.  相似文献   

10.
At low pH conditions and in the presence of anionic, cationic, and nonionic surfactants, hydrophobically modified alkali-soluble emulsions (HASE) exhibit pronounced interaction that results in the solubilization of the latex. The interaction between HASE latex and surfactant was studied using various techniques, such as light transmittance, isothermal titration calorimetry, laser light scattering, and electrophoresis. For anionic surfactant, noncooperative hydrophobic binding dominates the interaction at concentrations lower than the critical aggregation concentration (CAC) (C < CAC). However, cooperative hydrophobic binding controls the formation of mixed micelles at high surfactant concentrations (C > or = CAC), where the cloudy solution becomes clear. For cross-linked HASE latex, anionic surfactant binds only noncooperatively to the latex and causes it to swell. For cationic surfactant, electrostatic interaction occurs at very low surfactant concentrations, resulting in phase separation. With further increase in surfactant concentration, noncooperative hydrophobic and cooperative hydrophobic interactions dominate the binding at low and high surfactant concentrations, respectively. For anionic and cationic surfactant systems, the CAC is lower than the critical micelle concentration (CMC) of surfactants in water. In addition, counterion condensation plays an important role during the binding interaction between HASE latex and ionic surfactants. In the case of nonionic surfactants, free surfactant micelles are formed in solution due to their relatively low CMC values, and HASE latexes are directly solubilized into the micellar core of nonionic surfactants.  相似文献   

11.
The fluorescence decays of safranine T were studied in different homogeneous solvents and heterogeneous micellar solutions. It has been found that micellization leads to an increase in the lifetime. The lifetime distributions were studied in micelles and homogeneous media. It was found that the different half-width distributions of the dye in different micelles are related to the different orientation of the dye in different micelles. Also, the fluorescence quenching of safranine T by 4,6-disubstituted-3-cyanopyridin-2(1H)-thiones was studied in chloroform, methanol and acetonitrile as well as in different micelles. In heterogeneous media the kq values for quenching of safranine T by thiones in various micelles increase on the following order: kq(CTAB) < kq(TX-100) < kq(SDS). This is due to the electrostatic interactions between the anionic SDS and the cationic moiety of safranine T and therefore the quenching process will be less significant.  相似文献   

12.
基于静电作用, 阴离子表面活性剂可与阳离子聚铵组装形成复合胶束. 借助阳离子聚铵,复合胶束可以作为模板与硅源协同组装, 形成高度有序的介孔二氧化硅. 本文通过调变不同种类阴离子表面活性剂、合成体系pH值、合成温度及阳离子聚铵和硅源用量等因素, 合成了具有不同介观结构和形貌的介孔二氧化硅. 实验证实阴离子表面活性剂/阳离子聚铵复合胶束模板法是合成介孔二氧化硅的一种通用方法.  相似文献   

13.
A new kind of fluorescence probe, a fluorophore-labeled anionic surfactant, sodium 12-(N-dansyl)amino-dodecanate (12-DAN-ADA), was designed and synthesized. The applications of 12-DAN-ADA as a fluorescence probe in molecular assemblies, especially in the transitions between micelles and vesicles, were investigated systematically. It was found that 12-DAN-ADA can efficiently differentiate the two different aggregate types (shapes) in mixed cationic and anionic surfactant systems and double-chain cationic surfactant systems. Experimental results showed that the fluorescence anisotropy of 12-DAN-ADA increased sharply, the emission maxima became blue-shifted, and the fluorescence lifetime rose notably when the aggregates transformed from micelles to vesicles in mixed cationic and anionic surfactant systems. The fluorescence anisotropy can also distinguish different aggregate types in single-component double-chain cationic surfactant systems. Further studies demonstrated that 12-DAN-ADA is a more useful probe of transitions between micelles and vesicles than commonly used fluorescence probes, such as pyrene and 1,6-diphenyl-1,3,5-hexatriene (DPH).  相似文献   

14.
In this report we have studied micellization process of anionic, cationic and non-ionic surfactants using N,N-dimethylaminonapthyl-(acrylo)-nitrile (DMANAN) as an external fluorescence probe. Micropolarity, microviscosity, critical micellar concentration of these micelles based on steady state absorption and fluorescence and time resolved emission spectroscopy of the probe DMANAN show that the molecule resides in the micelle-water interface for ionic micelles and in the core for the non-ionic micelle. The effect of variation of pH of the micellar solution as well as fluorescence quenching measurements of DMANAN provide further support for the location of the probe in the micelles.  相似文献   

15.
Chargeselective separation and recovery of organic ionic dyes by polymeric micelles (PMs) are reported. Branched polyethylenimine (PEI) functionalized with 4‐cetyloxybenzaldehyde (CBA) via Schiff‐base bonds (PEI@CBA) can extract an anionic dye from cationic contaminants, and transfer it from an aqueous phase into an apolar oil phase, and thus leading to separation. While a physical micelle of PAA@PS, with polyacrylic acid (PAA) as core and polystyrene (PS) as shell, can selectively extract a cationic dye from anionic contaminants. When polar, yet nonionic groups are eliminated from the core of a PM, charge selectivity can be significantly enhanced. Although many anionic–cationic dyes can form a poorly water‐soluble complex or precipitate, separation is still feasible with a reasonably designed PM. Finally, entrapment of a guest by a PM is found easy but release may be difficult; in this case, PEI@CBA with an acid‐sheddable shell, can recover the entrapped guest. It is also found the encapsulation of a dye is usually accompanied with dye stacking, resulting in a changed UV/vis spectrum. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 872–881  相似文献   

16.
A steady-state and time-resolved photophysical study of a cationic phenazinium dye, phenosafranin (PSF), has been investigated in well-characterized biomimetic micellar nanocavities formed by anionic surfactants of varying chain lengths, namely, sodium decyl sulfate (S(10)S), sodium dodecyl sulfate (S(12)S), and sodium tetradecyl sulfate (S(14)S). In all these micellar environments, the charge transfer fluorescence of PSF shows a large hypsochromic shift along with an enhancement in the fluorescence quantum yield as compared to that in aqueous medium. A reduction in the nonradiative deactivation rate within the hydrophobic interior of micelles led to an increase in the fluorescence yield and lifetime. The present work shows the degree of accessibility of the fluorophore toward the ionic quencher in the presence of surfactants of different surfactant chain lengths. The fluorometric and fluorescence quenching studies suggest that the fluorophore resides at the micelle-water interfacial region. The enhancements in the fluorescence anisotropy and rotational relaxation time of the probe in all the micellar environments from the pure aqueous solution suggest that the fluorophore binds in motionally restricted regions introduced by the micelles. Polarity and viscosity of the microenvironments around the probe in the micellar systems have been determined. The work has paid proper attention to the hydrophobic effect of the surfactant chain length on photophysical observations.  相似文献   

17.
The miscibility and interactions between components in mixed adsorbed films and micelles containing zwitterionic (dodecyl sulfobetaine--DSB) and cationic (dodecyltrimethylammonium bromide) or anionic (sodium dodecyl sulfonate) surfactant, respectively, have been investigated. The molecular interactions have been quantified by the values of the excess free energy of adsorption (DeltaGS,Exc) and micelle formation (DeltaGM,Exc). The obtained results indicate nonideal behavior of the investigated mixtures since the values of DeltaGS,Exc and DeltaGM,Exc) are negative. Moreover, it has been found that DSB interact more strongly with anionic surfactant as compared to cationic surfactant owing to different structure of mixed monolayers and micelles.  相似文献   

18.
We present a general method of determining the structure and charge of globular ionic micelles, using neutron small-angle scattering. The micellar solutions may have any concentration within the micellar phase. The method is based in part on an analytic calculation of the interparticle correlations between monodisperse spherical micelles, and we discuss the theory in some detail to justify its application to polydisperse globular particles. Experimental results are presented for several cationic and anionic micellar systems.  相似文献   

19.
We have investigated the formation of threadlike micelles consisting of anionic surfactants and certain additives in aqueous solution. Threadlike micelles long enough to be entangled with each other were formed in a clear aqueous solution of two anionic surfactants, sodium hexadecyl sulfate and sodium tetradecyl sulfate. These solutions also contained pentylammonium bromides or p-toluidine halides and exhibited remarkable viscoelasticity. Because the molar ratio of surfactants to cationic additives in these micelles seemed close to unity, they formed 1:1 stoichiometric complexes between surfactant anions and additive cations, as previously found in systems of cationic surfactants such as hexadecyltrimethylammonium bromide and sodium salicylate. The viscoelastic behavior of these anionic threadlike micellar systems was adequately described by a simple Maxwell element with a single relaxation time and strength, as in many similar cationic systems.  相似文献   

20.
Dual fluorescence and UV absorption of 2'-ethylhexyl 4-(N,N-dimethylamino)benzoate (EHDMAB) were investigated in cationic, non-ionic and anionic micelles. When EHDMAB was solubilized in different micelles, the UV absorption of EHDMAB was enhanced. Twisted intramolecular charge transfer (TICT) emission with longer wavelength was observed in ionic micelles, whereas TICT emission with shorter wavelength was obtained in non-ionic micelles. In particular, dual fluorescence of EHDMAB was significantly quenched by the positively charged pyridinium ions arranged in the Stern layer of cationic micelles. UV radiation absorbed mainly decays via TICT emission and radiationless deactivation. The dimethylamino group of EHDMAB experiences different polar environments in ionic and non-ionic micelles according to the polarity dependence of TICT emission of EHDMAB in organic solvents. In terms of the molecular structures and sizes of EHDMAB and surfactants, each individual EHDMAB molecule should be buried in micelles with its dimethylamino group toward the polar head groups of different micelles and with its 2'-ethylhexyl chain toward the hydrophobic micellar core. Dynamic fluorescence quenching measurements of EHDMAB provide further support for the location of EHDMAB in different micelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号