首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A novel three-layer microfluidic polydimethylsiloxane (PDMS) device was constructed with two fluid chambers that holds a brain slice in place with microposts while maintaining laminar perfusate flow above and below the slice. Our fabrication technique permits rapid production of PDMS layers that can be applied to brain slices of different shapes and sizes. In this study, the device was designed to fit the shape and thickness (530-700 microm) of a medullary brain slice taken from P0-P4 neonatal rats. Medullary slices in this chamber spontaneously produced rhythmic, respiratory-related motor output for up to 3 h, thereby demonstrating that brain slice viability was maintained for prolonged periods. This design is unique in that it achieves independent control of fluids through multiple channels in two separate fluid chambers. The laminar flow exhibited by the microfluidic chamber allows controlled solutions to target specific areas of the brain slice based on the input flow rates. To demonstrate this capability, a stream of Na(+)-free solution was focused on one half of a medullary slice to abolish spontaneous neural activity in only that half of the brain slice, while the other half remained active. We also demonstrated that flow of different solutions can be focused over the midline of the brain slice. The multilayer brain slice chamber design can integrate several traditional types of electrophysiology tools that are commonly used to measure neurophysiological properties of brain slices. Thus, this new microfluidic chamber is advantageous for experiments that involve controlled drug or solution delivery at high spatiotemporal resolution.  相似文献   

2.
Huang Y  Williams JC  Johnson SM 《Lab on a chip》2012,12(12):2103-2117
Isolated brain tissue, especially brain slices, are valuable experimental tools for studying neuronal function at the network, cellular, synaptic, and single channel levels. Neuroscientists have refined the methods for preserving brain slice viability and function and converged on principles that strongly resemble the approach taken by engineers in developing microfluidic devices. With respect to brain slices, microfluidic technology may 1) overcome the traditional limitations of conventional interface and submerged slice chambers and improve oxygen/nutrient penetration into slices, 2) provide better spatiotemporal control over solution flow/drug delivery to specific slice regions, and 3) permit successful integration with modern optical and electrophysiological techniques. In this review, we highlight the unique advantages of microfluidic devices for in vitro brain slice research, describe recent advances in the integration of microfluidic devices with optical and electrophysiological instrumentation, and discuss clinical applications of microfluidic technology as applied to brain slices and other non-neuronal tissues. We hope that this review will serve as an interdisciplinary guide for both neuroscientists studying brain tissue in vitro and engineers as they further develop microfluidic chamber technology for neuroscience research.  相似文献   

3.
This study develops a novel capillary electrophoresis (CE) microfluidic device featuring a conventional cross-form injection system and an expansion chamber located at the inlet of the separation channel. The combined injection system/expansion chamber arrangement is designed to deliver a high-quality sample band into the separation channel such that the detection performance of the device is enhanced. Numerical simulations are performed to investigate the electrokinetic transport processes in the microfluidic device and to establish the optimal configuration of the expansion chamber. The results indicate that an expansion chamber with an expansion ratio of 2.5 and an expansion length of 500 microm delivers a sample plug with the correct shape and orientation. With this particular configuration, the peak intensities of the sample are sharp and clearly distinguishable in the detection region of the separation channel. Therefore, this configuration is well suited for capillary electrophoresis applications which require a highly sensitive resolution of the sample plug. The novel CE microfluidic device developed in this study has an exciting potential for use in high-performance, high-throughput chemical analysis applications and in many other applications throughout the field of micro-total-analysis-systems.  相似文献   

4.
A surface plasmon resonance (SPR) sensor on a compact disk (CD)-type microfluidic device was developed to miniaturize the elements of a complete analytical system, pump and valves. The CD-type microfluidic device was fabricated by attaching a polydimethylsiloxane disk plate that contained microchannels and reservoirs to a flat polycarbonate disk plate that contained grating films with a thin layer of Au. The optical system of the SPR sensor and the theory for its operation are based on the principle of a grating coupled-type SPR. The sample and reagent solutions in the reservoirs on the CD-type microfluidic device were sequentially introduced into the detection chamber by centrifugal force generated by the rotation of the microfluidic device. The variation of resonance wavelength was dependent on the refractive index of the sample solution. This CD-type SPR sensor was successfully used in an immunoassay of immunoglobulin A (IgA). The anti-IgA, blocking reagent, sample and washing solution in the reservoirs were sequentially introduced into the detection chamber by changing the frequency of rotation of the microfluidic device. IgA in the sample solution was adsorbed to the anti-IgA immobilized on the Au thin layer in the detection chamber and was then detected by the SPR sensor.  相似文献   

5.
We report a novel microfluidic chamber incorporating fluid ports with active suction to achieve localized chemical stimulation of brain slices. A two-level soft-lithography process is used to fabricate fluid ports with integrated injection and suction holes that are connected to underlying microchannels. Fluorescence imaging, particle tracking velocimetry, and cell staining are used to characterize flows around a fluid port with or without active suction to validate effective localization of injected chemicals. To demonstrate biological applicability of the chamber, we show an induction of cortical spreading depression (CSD) waves in mouse brain slices through controlled focal delivery of potassium chloride solution.  相似文献   

6.
Integrated DNA extraction and amplification have been carried out in a microfluidic device using electro-osmotic pumping (EOP) for fluidic control. All the necessary reagents for performing both DNA extraction and polymerase chain reaction (PCR) amplification were pre-loaded into the microfluidic device following encapsulation in agarose gel. Buccal cells were collected using OmniSwabs [Whatman?, UK] and manually added to a chaotropic binding/lysis solution pre-loaded into the microfluidic device. The released DNA was then adsorbed onto a silica monolith contained within the DNA extraction chamber and the microfluidic device sealed using polymer electrodes. The washing and elution steps for DNA extraction were carried out using EOP, resulting in transfer of the eluted DNA into the PCR chamber. Thermal cycling, achieved using a Peltier element, resulted in amplification of the Amelogenin locus as confirmed using conventional capillary gel electrophoresis. It was demonstrated that the PCR reagents could be stored in the microfluidic device for at least 8 weeks at 4 °C with no significant loss of activity. Such methodology lends itself to the production of 'ready-to-use' microfluidic devices containing all the necessary reagents for sample processing, with many obvious applications in forensics and clinical medicine.  相似文献   

7.
Park S  Zhang Y  Wang TH  Yang S 《Lab on a chip》2011,11(17):2893-2900
Biological sample processing involves purifying target analytes from various sample matrices and concentrating them to a small volume from a large volume of crude sample. This complex process is the major obstacle for developing a microfluidic diagnostic platform. In this study, we present a microfluidic device that can continuously separate and concentrate pathogenic bacterial cells from complex sample matrices such as cerebrospinal fluid and whole blood. Having overcome critical limitations of dielectrophoretic (DEP) operation in physiological media of high conductivity, we utilized target specific DEP techniques to incorporate cell separation, medium exchange, and target concentration into an integrated platform. The proposed microfluidic device can uptake mL volumes of crude biological sample and selectively concentrate target cells into a submicrolitre volume, providing ~10(4) fold of concentration. We designed the device based on the electrokinetic theory and electric field simulation, and tested the device performance with different sample types. The separation efficiency of the device was as high as 97.0% for a bead mixture in TAE buffer and 94.3% and 87.2% for E. coli in human cerebrospinal fluid and blood, respectively. A capture efficiency of 100% was achieved in the concentration chamber. With a relatively simple configuration, the proposed device provides a robust method of continuous sample processing, which can be readily integrated into a fully automated microfluidic diagnostic platform for pathogen detection and quantification.  相似文献   

8.
There is increasing interest in using microalgae as a lipid feedstock for the production of biofuels. Lipids used for these purposes are triacylglycerols that can be converted to fatty acid methyl esters (biodiesel) or decarboxylated to “green diesel.” Lipid accumulation in most microalgal species is dependent on environmental stress and culturing conditions, and these conditions are currently optimized using slow, labor-intensive screening processes. Increasing the screening throughput would help reduce the development cost and time to commercial production. Here, we demonstrated an initial step towards this goal in the development of a glass/poly(dimethylsiloxane) (PDMS) microfluidic device capable of screening microalgal culturing and stress conditions. The device contained power-free valves to isolate microalgae in a microfluidic growth chamber for culturing and stress experiments. Initial experiments involved determining the biocompatibility and culturing capability of the device using the microalga Tetraselmis chuii. With this device, T. chuii could be successfully cultured for up to 3 weeks on-chip. Following these experiments, the device was used to investigate lipid accumulation in the microalga Neochloris oleabundans. It was shown that this microalga could be stressed to accumulate cytosolic lipids in a microfluidic environment, as evidenced with fluorescence lipid staining. This work represents the first example of microalgal culturing in a microfluidic device and signifies an important expansion of microfluidics into the biofuels research arena.  相似文献   

9.
An integrated microfluidic distillation system is proposed for separating a mixed ethanol-methanol-water solution into its constituent components. The microfluidic chip is fabricated using a CO2 laser system and comprises a serpentine channel, a boiling zone, a heating zone, and a cooled collection chamber filled with de-ionized (DI) water. In the proposed device, the ethanol-methanol-water solution is injected into the microfluidic chip and driven through the serpentine channel and into the collection chamber by means of a nitrogen carrier gas. Following the distillation process, the ethanol-methanol vapor flows into the collection chamber and condenses into the DI water. The resulting solution is removed from the collection tank and reacted with a mixed indicator. Finally, the methanol concentration is inversely derived from the absorbance measurements obtained using a spectrophotometer. The experimental results show the proposed microfluidic system achieves an average methanol distillation efficiency of 97%. The practicality of the proposed device is demonstrated by detecting the methanol concentrations of two commercial fruit wines. It is shown that the measured concentration values deviate by no more than 3% from those obtained using a conventional bench top system.  相似文献   

10.
Vrhovec S  Mally M  Kavčič B  Derganc J 《Lab on a chip》2011,11(24):4200-4206
The reversible environmental changes around flaccid lipid vesicles represent a considerable experimental challenge, particularly because of remarkable softness of flaccid membranes, which can warp irreversibly under the slightest hydrodynamic flow. As a result, we have developed a microfluidic device for the controlled analysis of individual flaccid, giant lipid vesicles in a changing chemical environment. The setup combines the advantages of a flow-free microfluidic diffusion chamber and optical tweezers, which are used to load the sample vesicles into the chamber. After a vesicle is loaded into the diffusion chamber, its chemical environment is controllably and reversibly changed solely by means of diffusion. The chamber is designed as a 250 micrometres-long and 100 micrometres-wide dead-end microchannel, which extends from a T-junction of the main microchannels. Measurements of the flow-velocity profile in the chamber show that the flow rate decreases exponentially and scales linearly with the flow rate in the main channel. The characteristic length of the exponential decrease is 15 (1 ± 0.13) micrometres, meaning that a large part of the diffusion chamber is effectively flow-free. The diffusion properties are assessed by monitoring the diffusion of a dye into the chamber. It was found that a simple 1D diffusion model fits well to the experimental data. The time needed for the exchange of solutes in the chamber is of the order of minutes, depending on the solute's molecular weight. Here, we demonstrate how the diffusion chamber can be used for reversible environmental changes around flaccid, giant lipid vesicles and membrane tethers (nanotubes).  相似文献   

11.
This work demonstrates the development of microfluidic compact discs (CDs) for protein purification and fractionation integrating a series of microfluidic features, such as microreservoirs, microchannels, and microfluidic fractionators. The CDs were fabricated with polydimethylsiloxane (PDMS), and each device contained multiple identical microfluidic patterns. Each pattern employed a microfluidic fractionation feature with operation that was based on the redirection of fluid into an isolation chamber as a result of an overflow. This feature offers the advantage of automated operation without the need for any external manipulation, which is independent of the size and the charge of the fractionated molecules. The performance of the microfluidic fractionator was evaluated by its integration into a protein purification microfluidic architecture. The microfluidic architecture employed a microchamber that accommodated a monolithic microcolumn, the fractionator, and an isolation chamber, which was also utilized for the optical detection of the purified protein. The monolithic microcolumn was polymerized “in situ” on the CD from a monolith precursor solution by microwave-initiated polymerization. This technique enabled the fast, efficient, and simultaneous polymerization of monoliths on disposable CD microfluidic platforms. The design of the CD employed allows the integration of various processes on a single microfluidic device, including protein purification, fractionation, isolation, and detection.   相似文献   

12.
In this work a portable microfluidic device with a reusable integrated high voltage power supply is presented, which allows for quick exchange of inexpensive disposable poly(dimethylsiloxane)(PDMS) microfluidic chips on a carrier only slightly larger than a microscope slide. The device is powered by an onboard MN21 cell battery (5 mm radius, 30 mm long) and is demonstrated through the rapid and controlled transport of a fluorescent dye through an expansion chamber geometry. Power consumption experiments demonstrate the device's ability to complete over 40 dispense-flushing cycles on a single battery.  相似文献   

13.
High-density microfluidic arrays for cell cytotoxicity analysis   总被引:12,自引:0,他引:12  
In this paper, we report on the development of a multilayer elastomeric microfluidic array platform for the high-throughput cell cytotoxicity screening of mammalian cell lines. Microfluidic channels in the platform for cell seeding are orthogonal to channels for toxin exposure, and within each channel intersection is a circular chamber with cell-trapping sieves. Integrated, pneumatically-actuated elastomeric valves within the device isolate the microchannel array within the device into parallel rows and columns for cell seeding and toxin exposure. As a demonstration of the multiplexing capability of the platform, a microfluidic array containing 576 chambers was used to screen three cell types (BALB/3T3, HeLa, and bovine endothelial cells) against a panel of five toxins (digitonin, saponin, CoCl(2), NiCl(2), acrolein). Evaluation of on-chip cell morphology and viability was carried out using fluorescence microscopy, with outcomes comparable to microtiter plate cytotoxicity assays. Using this scalable platform, cell seeding and toxin exposure can be carried out within a single microfluidic device in a multiplexed format, enabling high-density parallel cytotoxicity screening while minimizing reagent consumption.  相似文献   

14.
High-throughput preparation of multi-component solutions is an integral process in biology, chemistry and materials science for screening, diagnostics and analysis. Compact microfluidic systems enable such processing with low reagent volumes and rapid testing. Here we present a microfluidic device that incorporates two gradient generators, a tree-like generator and a new microfluidic active injection system, interfaced by intermediate solution reservoirs to generate diluted combinations of input solutions within an 8 × 8 or 10 × 10 array of isolated test chambers. Three input solutions were fed into the device, two to the tree-like gradient generator and one to pre-fill the test chamber array. The relative concentrations of these three input solutions in the test chambers completely characterized device behaviour and were controlled by the number of injection cycles and the flow rate. Device behaviour was modelled by computational fluid dynamics simulations and an approximate analytic formula. The device may be used for two-dimensional (2D) combinatorial dilution by adding two solutions in different relative concentrations to each of its three inputs. By appropriate choice of the two-component input solutions, test chamber concentrations that span any triangle in 2D concentration space may be obtained. In particular, explicit inputs are given for a coarse screening of a large region in concentration space followed by a more refined screening of a smaller region, including alternate inputs that span the same concentration region but with different distributions. The ability to probe arbitrary subspaces of concentration space and to control the distribution of discrete test points within those subspaces makes the device of potential benefit for high-throughput cell biology studies and drug screening.  相似文献   

15.
The inability of neurons to undergo mitosis renders damage to the central or peripheral nervous system. Neural stem cell therapy could provide a path for treating the neurodegenerative diseases. However, reliable and simple tools for the developing and testing neural stem cell therapy are still required. Here, we show the development of a micropillar‐based microfluidic device to trap the uniform‐sized neurospheres. The neurospheres trapped within micropillar arrays were largely differentiated into neuronal cells, and their neurite networks were observed in the microfluidic device. Compared to conventional cultures on glass slides, the neurite networks generated with this method have a higher reproducibility. Furthermore, we demonstrated the effect of thapsigargin on the neurite networks in the microfluidic device, demonstrating that neural networks exposed to thapsigargin were largely diminished and disconnected from each other. Therefore, this micropillar‐based microfluidic device could be a potential tool for screening of neurotoxins.  相似文献   

16.
Polymerase chain reaction (PCR) is an essential part of research based on genomics or cell analysis. The development of a microfluidic device that would be suitable for high-temperature-based reactions therefore becomes an important contribution towards the integration of micro-total analysis systems (μTAS). However, problems associated with the generation of air bubbles in the microchannels before the introduction of the assay liquid, which we call the “initial start-up” in this study, made the flow irregular and unstable. In this report, we have tried to address these problems by adapting a novel liquid-flow method for high-temperature-based reactions. A PDMS-based microfluidic device was fabricated by soft-lithography techniques and placed on a cartridge heater. The generation of the air bubbles was prevented by introducing the fluorinated oil, an inert and highly viscous liquid, as the cap just before the introduction of the sample solutions into the microchannels. The technique was applied for continuous-flow PCR, which could perform PCR on-chip in a microfluidic system. For the evaluation of practical accuracy, plasmid DNA that serves as a reference molecule for the quantification of genetically modified (GM) maize was used as the template DNA for continuous-flow PCR. After PCR, the products were collected in a vial and analyzed by gel electrophoresis to confirm the accuracy of the results. Additionally, quantitative continuous-flow PCR was performed using TaqMan technology on our PCR device. A laser detection system was also used for the quantitative PCR method. We observed a linear relationship between the threshold cycle (Ct) and the initial DNA concentration. These results showed that it would be possible to quantify the initial copies of the template DNA on our microfluidic device. Accurate quantitative DNA analysis in microfluidic systems is required for the integration of PCR with μTAS, thus we anticipate that our device would have promising potential for applications in a wide range of research.  相似文献   

17.
Shin MK  Kim SK  Jung H 《Lab on a chip》2011,11(22):3880-3887
Most studies of cancer metastasis focus on cancer cell invasion utilizing adhesion assays that are performed independently, and are thus limited in their ability to mimic complex cancer metastasis on a chip. Here we report the development of an integrated cell-based microfluidic chip for intra- and extravasation that combines two assays on one chip for the study of the complex cascade of cancer metastasis. This device consists of two parts; one is an intravasation chamber for the three-dimensional (3-D) culture of cancer cells using a Matrigel matrix, and the other is an extravasation chamber for the detection of metastasized cancer cells by adhesion molecules expressed by epithelial cells. In this novel system, the intravasation and extravasation processes of cancer metastasis can be studied simultaneously using four screw valves. Metastatic LOVO and non-metastatic SW480 cells were used in this study, and the invasion of LOVOs was found to be higher compared to SW480. In contrast, invasion of cells treated with metalloproteinase (MMP) inhibitors decreased within the intravasation chamber. Degraded cancer cells from the intravasation chamber were detected within the extravasation chamber under physiological conditions of shear stress, and differences in binding efficiency were also detected when CA19-9 antibody, an inhibitor of cancer cell adhesion, was used to treat degraded cancer cells. Our results support the potential usefulness of this new 3D cell-based microfluidic system as a drug screening tool to select targets for the development of new drugs and to verify their effectiveness.  相似文献   

18.
This paper reports a droplet-based microfluidic device composed of patterned co-planar electrodes in an all-in-a-single-plate arrangement and coated with dielectric layers for electrowetting-on-dielectric (EWOD) actuation of discrete droplets. The co-planar arrangement is preferred over conventional two-plate electrowetting devices because it provides simpler manufacturing process, reduced viscous drag, and easier liquid-handling procedures. These advantages lead to more versatile and efficient microfluidic devices capable of generating higher droplet speed and can incorporate various other droplet manipulation functions into the system for biological, sensing, and other microfluidic applications. We have designed, fabricated, and tested the devices using an insulating layer with materials having relatively high dielectric constant (SiO(2)) and compared the results with polymer coatings (Cytop) with low dielectric constant. Results show that the device with high dielectric layer generates more reproducible droplet transfer over a longer distance with a 25% reduction in the actuation voltage with respect to the polymer coatings, leading to more energy efficient microfluidic applications. We can generate droplet speeds as high as 26 cm/s using materials with high dielectric constant such as SiO(2).  相似文献   

19.
Spatial microgravity is a significant factor affecting and causing physiological changes of organisms in space environment. On‐site assessment of the damage associated to microgravity is very important for future long‐term space exploration of mankind. In this paper, a new microfluidic device for analyzing the damage of microgravity on Caenorhabditis elegans (C. elegans) has been developed. This device is mainly composed of a microfluidic chip, a dual imaging module, and an imaging acquisition and processing module, which are integrated into a compact system. The microfluidic chip is designed as a platform for monitoring C. elegans, which is captured in an imaging region through a suction structure in the microfluidic chip. A dual imaging module is designed to obtain the images of bright field and fluorescence of C. elegans. The behaviors of C. elegans are analyzed based on the dual‐mode imaging of bright field and fluorescence to assess the degree of damage due to microgravity. A comparative study using a commercial microscope is also conducted to demonstrate the unique advantage of the developed system under the simulated microgravity. The results show that the developed system can evaluate the damage of C. elegans under microgravity accurately and conveniently. Furthermore, this device has compact size and weight, easy operation, and low‐cost, which could be highly advantageous for on‐site evaluation of the damage to microorganisms under microgravity in a space station.  相似文献   

20.
We have developed a hydrogel-based microfluidic device that is capable of generating a steady and long term linear chemical concentration gradient with no through flow in a microfluidic channel. Using this device, we successfully monitored the chemotactic responses of wildtype Escherichia coli (suspension cells) to alpha-methyl-DL-aspartate (attractant) and differentiated HL-60 cells (a human neutrophil-like cell line that is adherent) to formyl-Met-Leu-Phe (f-MLP, attractant). This device advances the current state of the art in microchemotaxis devices in that (1) it demonstrates the validity of using hydrogels as the building material for a microchemotaxis device; (2) it demonstrates the potential of the hydrogel based microfluidic device in biological experiments since most of the proteins and nutrients essential for cell survival are readily diffusible in hydrogel; (3) it is capable of applying chemical stimuli independently of mechanical stimuli; (4) it is straightforward to make, and requires very basic tools that are commonly available in biological labs. This device will also be useful in controlling the chemical and mechanical environment during the formation of tissue engineered constructs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号