首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes a method, discovered and refined by parallel screening, for the epoxidation of alkenes. It uses hydrogen peroxide as the terminal oxidant, is promoted by catalytic amounts (1.0-0.1 mol %) of manganese(2+) salts, and must be performed using at least catalytic amounts of bicarbonate buffer. Peroxymonocarbonate, HCO(4)(-), forms in the reaction, but without manganese, minimal epoxidation activity is observed in the solvents used for this research, that is, DMF and (t)BuOH. More than 30 d-block and f-block transition metal salts were screened for epoxidation activity under similar conditions, but the best catalyst found was MnSO(4). EPR studies show that Mn(2+) is initially consumed in the catalytic reaction but is regenerated toward the end of the process when presumably the hydrogen peroxide is spent. A variety of aryl-substituted, cyclic, and trialkyl-substituted alkenes were epoxidized under these conditions using 10 equiv of hydrogen peroxide, but monoalkyl-alkenes were not. To improve the substrate scope, and to increase the efficiency of hydrogen peroxide consumption, 68 diverse compounds were screened to find additives that would enhance the rate of the epoxidation reaction relative to a competing disproportionation of hydrogen peroxide. Successful additives were 6 mol % sodium acetate in the (t)BuOH system and 4 mol % salicylic acid in the DMF system. These additives enhanced the rate of the desired epoxidation reaction by 2-3 times. Reactions performed in the presence of these additives require less hydrogen peroxide and shorter reaction times, and they enhance the yields obtained from less reactive alkene substrates. Possible mechanisms for the reaction are discussed.  相似文献   

2.
王文芳  孙强盛  夏春谷  孙伟 《催化学报》2018,39(9):1463-1469
自然界中存在许多的金属酶,它们参与促进各种各样的氧化反应,例如羟化反应,环氧化反应等.金属酶催化的反应具有催化效率高、反应条件温和、选择性高等优点.受大自然中的金属酶结构及其性质的启发,人们提出了仿生催化氧化的理念,并开始对金属酶进行模拟,致力于发展清洁氧化的反应方式.在过去的几十年中,科学家们设计合成了一系列仿生金属配合物催化剂.例如,利用非手性的乙二胺骨架设计合成出四齿氮配体MEP(N,N'-dimethylN,N'-bis(2-pyridinylmethyl)ethane-1,2-diamine),将其制备成相应的铁配合物催化剂,该铁催化剂可以很好的实现脂肪族烯烃的环氧化,产率高达90%.2003年,Stack小组首次报道了利用手性N,N-二甲基环己二胺骨架衍生的四齿氮配体金属配合物Mn-MCP-(OTf)2(MCP=N,N-dimethyl-N,N-bis(2-pyridylmethyl)cyclohexane-trans-1,2-diamine)催化的不对称环氧化反应.该反应的对映选择性仅仅为10%.因此,发展新型手性四氮配体金属配合物,用于高产率、高对映选择性的不对称环氧化反应,值得进行深入研究.近年来发展的一些含手性二胺骨架的四齿氮配体,例如PDP(2-[[2-(1-(pyridin-2-ylmethyl)-pyrrolidin-2-yl)pyrrolidin-1-yl]methyl]pyridine),被应用到不对称环氧化反应中,但是其手性二胺骨架为联吡咯,价格昂贵,难以制备.这在很大程度上限制了其在不对称合成中的实际应用.因此,利用一些易于合成的手性二胺骨架,发展结构新颖、催化性能优良的四氮金属配合物,成为实现高效、高选择性不对称环氧化反应的关键.在之前的工作基础上,本文以简单易得、价格低廉的天然氨基酸——L-脯氨酸为起始原料,选取吡啶环和含取代基的吡啶环作为侧基氮供体,制备了三种手性四齿氮配体.随后,我们利用新发展的手性四齿氮配体,合成了相应的锰配合物,并且分别将其运用于烯烃不对称环氧化反应中,仔细评估了这些锰金属配合物的催化性能.建立了以0.2 mol%的锰配合物为催化剂,0.5当量的2,2-二甲基丁酸为添加剂,30%双氧水为氧化剂,反应温度为–30 oC,乙腈为溶剂的催化不对称环氧化反应体系.反应结果显示:该催化剂催化的不对称环氧化反应底物适用性广泛,其中苯乙烯、苯并吡喃、烯酰胺等化合物均可以被成功地转化为相应的环氧化物,得到中等至优异的对映选择性(产率最高可达95%,对映选择性最高可达99%).  相似文献   

3.
Several di‐nitrogen Schiff bases were synthesized through the condensation of 2‐pyridinecarboxaldehyde with primary amines. The Schiff bases as ligands coordinated with methyltrioxorhenium (MTO) smoothly to afford the correspondent complexes which were characterized by IR, 1H NMR, 13C NMR, MS and elemental analysis. One of the complexes was analyzed by X‐ray crystallography as well. The results revealed that the complexes display distorted octahedral geometry in the solid state with a trans‐position of Schiff base. Catalytic results indicated that the complexes as catalysts increased the selectivity of epoxides remarkably compared with MTO in the epoxidation of alkenes with 30% hydrogen peroxide as oxidant and the increasing rate depended on the structure of the Schiff base ligands of the complexes. The results indicated that the stronger the donating ability of the ligand, the higher selectivity of epoxides the complex gave in the epoxidation of alkenes with 30% hydrogen peroxide as oxidant. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Films of polyions and octahedral layered manganese oxide (OL-1) nanoparticles on carbon electrodes made by layer-by-layer alternate electrostatic adsorption were active for electrochemical catalysis of styrene epoxidation in solution in the presence of hydrogen peroxide and oxygen. The highest catalytic turnover was obtained by using applied voltage -0.6 V vs SCE, O(2), and 100 mM H(2)O(2). (18)O isotope labeling experiments suggested oxygen incorporation from three different sources: molecular oxygen, hydrogen peroxide, and/or lattice oxygen from OL-1 depending on the potential applied and the oxygen and hydrogen peroxide concentrations. Oxygen and hydrogen peroxide activate the OL-1 catalyst for the epoxidation. The pathway for styrene epoxidation in the highest yields required oxygen, hydrogen peroxide, and a reducing voltage and may involve an activated oxygen species in the OL-1 matrix.  相似文献   

5.
Two molybdenum (VI) hydrogen-bonded network polymers [MoO2F4]·(4,4′-H2bpd)(H2O)2 (1) and [MoO2Cl3(H2O)]·(4,4′-H2bpd)Cl (2) (bpd = bipiperidine) have been synthesized and examined as catalysts for epoxidation of cyclooctene. Complexes of the Mo compounds containing the bpd ligand are prepared and characterized by infrared spectroscopy, thermogravimetric and elemental analyses. They have been structurally characterized by single crystal X-ray diffraction analysis. The structures of both the complexes are shown to be comprised of molybdenum and two protonated N-ligand cations that have resulted in a cross-linked hydrogen-bonded network structure. These complexes are applicable as catalysts for the cis-cyclooctene epoxidation reactions with hydrogen peroxide as a source of oxygen and NaHCO3 as a cocatalyst. It has been observed that the formation of the oxidant peroxymonocarbonate ion, HCO4 by hydrogen peroxide and bicarbonate enhances the epoxidation reaction. Both the complexes have exhibited a good activity and a very high selectivity for the formation of cyclooctene oxide. An erratum to this article can be found at  相似文献   

6.
Adamantyl-substituted dicarbonyl compounds have been synthesized by reactions of 1-bromo-adamantane with ethyl acetoacetate, 1,3-diphenylpropane-1,3-dione, and dimethyl malonate in the presence of iron and manganese complexes.  相似文献   

7.
Nano-sized particles of manganese oxides have been prepared by a very simple and cheap process using a decomposing aqueous solution of manganese nitrate at 100 °C. Scanning electron microscopy, transmission electron microscopy and X-ray diffraction spectrometry have been used to characterize the phase and the morphology of the manganese oxide. The nano-sized manganese oxide shows efficient catalytic activity toward water oxidation and the epoxidation of olefins in the presence of cerium(iv) ammonium nitrate and hydrogen peroxide, respectively.  相似文献   

8.

The polymer supported transition metal complexes of N,N′‐bis (o‐hydroxy acetophenone) hydrazine (HPHZ) Schiff base were prepared by immobilization of N,N′‐bis(4‐amino‐o‐hydroxyacetophenone)hydrazine (AHPHZ) Schiff base on chloromethylated polystyrene beads of a constant degree of crosslinking and then loading iron(III), cobalt(II) and nickel(II) ions in methanol. The complexation of polymer anchored HPHZ Schiff base with iron(III), cobalt(II) and nickel(II) ions was 83.30%, 84.20% and 87.80%, respectively, whereas with unsupported HPHZ Schiff base, the complexation of these metal ions was 80.3%, 79.90% and 85.63%. The unsupported and polymer supported metal complexes were characterized for their structures using I.R, UV and elemental analysis. The iron(III) complexes of HPHZ Schiff base were octahedral in geometry, whereas cobalt(II) and nickel(II) complexes showed square planar structures as supported by UV and magnetic measurements. The thermogravimetric analysis (TGA) of HPHZ Schiff base and its metal complexes was used to analyze the variation in thermal stability of HPHZ Schiff base on complexation with metal ions. The HPHZ Schiff base showed a weight loss of 58% at 500°C, but its iron(III), cobalt(II) and nickel(II) ions complexes have shown a weight loss of 30%, 52% and 45% at same temperature. The catalytic activity of metal complexes was tested by studying the oxidation of phenol and epoxidation of cyclohexene in presence of hydrogen peroxide as an oxidant. The supported HPHZ Schiff base complexes of iron(III) ions showed 64.0% conversion for phenol and 81.3% conversion for cyclohexene at a molar ratio of 1∶1∶1 of substrate to catalyst and hydrogen peroxide, but unsupported complexes of iron(III) ions showed 55.5% conversion for phenol and 66.4% conversion for cyclohexene at 1∶1∶1 molar ratio of substrate to catalyst and hydrogen peroxide. The product selectivity for catechol (CTL) and epoxy cyclohexane (ECH) was 90.5% and 96.5% with supported HPHZ Schiff base complexes of iron(III) ions, but was found to be low with cobalt(II) and nickel(II) ions complexes of Schiff base. The selectivity for catechol (CTL) and epoxy cyclohexane (ECH) was different with studied metal ions and varied with molar ratio of metal ions in the reaction mixture. The selectivity was constant on varying the molar ratio of hydrogen peroxide and substrate. The energy of activation for epoxidation of cyclohexene and phenol conversion in presence of polymer supported HPHZ Schiff base complexes of iron(III) ions was 8.9 kJ mol?1 and 22.8 kJ mol?1, respectively, but was high with Schiff base complexes of cobalt(II) and nickel(II) ions and with unsupported Schiff base complexes.  相似文献   

9.
Tong KH  Wong KY  Chan TH 《Organic letters》2003,5(19):3423-3425
[reaction: see text] Effective epoxidation of lipophilic alkenes using hydrogen peroxide was accomplished with the manganese sulfate/bicarbonate catalytic system in an ionic liquid at room temperature.  相似文献   

10.
Olefin epoxidation provides an operative protocol to investigate the oxygen transfer process in nature. A novel manganese complex with a cross-bridged cyclam ligand, MnIV(Me2EBC)(OH)2(2+) (Me2EBC = 4,11-dimethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane), was used to study the epoxidation mechanism with biologically important oxidants, alkyl hydroperoxides. Results from direct reaction of the freshly synthesized manganese(IV) complex, [Mn(Me2EBC)(OH)2](PF6)2, with various olefins in neutral or basic solution, and from catalytic epoxidation with oxygen-labeled solvent, H2 18O, eliminate the manganese oxo moiety, Mn(IV)=O, as the reactive intermediate and obviate an oxygen rebound mechanism. Epoxidations of norbornylene under different conditions indicate multiple mechanisms for epoxidation, and cis-stilbene epoxidation under atmospheric 18O2 reveals a product distribution indicating at least two distinctive intermediates serving as the reactive species for epoxidation. In addition to alkyl peroxide radicals as dominant intermediates, an alkyl hydroperoxide adduct of high oxidation state manganese(IV) is suggested as the third kind of active intermediate responsible for epoxidation. This third intermediate functions by the Lewis acid pathway, a process best known for hydrogen peroxide adducts. Furthermore, the tert-butyl peroxide adduct of this manganese(IV) complex was detected by mass spectroscopy under catalytic oxidation conditions.  相似文献   

11.
阳卫军 《分子催化》2012,(4):314-321
以苯乙烯、环己烯和反式二苯乙烯为烯烃底物,以双氧水、叔丁基过氧化氢和异丙苯过氧化氢为氧化剂,以苯环上对位和邻位氯取代的四苯基金属卟啉为仿生催化剂,对烯烃的催化环氧化反应进行了对比研究.讨论了不同氯取代位的四苯基金属卟啉对烯烃环氧化性能的影响.实验结果表明,在没有助催化剂存在下,邻位氯代的四(2,6-二氯苯基)铁(锰)卟啉对烯烃的环氧化具有优异的催化性能,烯烃底物的转化率和环氧选择性都比对位氯代的四苯基铁(锰)卟啉高,且反应条件温和.其中FeⅢ(TDCPP)Cl的催化性能最好,环氧化选择性最高,催化氧化苯乙烯时,环氧苯乙烷的选择性达到了90.4%.相同金属离子不同配体的金属卟啉传递氧原子的能力为TDCPP>T(p-Cl)PP>TPP.氧化剂的结构对环氧化物的选择性有较大影响.过氧键连有吸电子基团的异丙苯过氧化氢对环氧化物的选择性最高.根据实验结果,对金属卟啉催化环氧化机理进行了分析.  相似文献   

12.
The polymer-bound Schiff base ternary manganese complexes [PS-SalPhe-Mn-L (L = Phen, Bipy and 8HQ)] have been prepared from the polymer-bound Schiff base ligand, a manganese salt and the second ligand, such as 1,10-phenanthroline (phen), 2,2‘-bipyridyl (bipy) and 8-quinolinol (8HQ). The polymer-bound Schiff base ternary manganese complexes were characterized by means of infrared spectrometry and ICPAES. The catalytic activities of the complexes have been studied in the aerobic epoxidation of long-chain linear aliphatic olefins. It is shown that 1-octene or 1-decene can be directly oxidized by molecular oxygen when catalyzed by PS-SalPhe-Mn-L(L=Phen, Bipy and 8HQ), and 1,2-epoxy alkane can be afforded in these reactions.  相似文献   

13.
Olefin epoxidations are a class of reactions appropriate for the investigation of oxygenation processes in general. Here, we report the catalytic epoxidation of various olefins with a novel, cross-bridged cyclam manganese complex, Mn(Me2EBC)Cl2 (Me2EBC is 4,11-dimethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane), using hydrogen peroxide as the terminal oxidant, in acetone/water (ratio 4:1) as the solvent medium. Catalytic epoxidation studies with this system have disclosed reactions that proceed by a nonradical pathway other than the expected oxygen-rebound mechanism that is characteristic of high-valent, late-transition-metal catalysts. Direct treatment of olefins with freshly synthesized [Mn(IV)(Me2EBC)(OH)2](PF6)2 (pKa = 6.86) in either neutral or basic solution confirms earlier observations that neither the oxo-Mn(IV) nor oxo-Mn(V) species is responsible for olefin epoxidization in this case. Catalytic epoxidation experiments using the 18O labels in an acetone/water (H2(18)O) solvent demonstrate that no 18O from water (H2(18)O) is incorporated into epoxide products even though oxygen exchange was observed between the Mn(IV) species and H2(18)O, which leads to the conclusion that oxygen transfer does not proceed by the well-known oxygen-rebound mechanism. Experiments using labeled dioxygen, (18)O2, and hydrogen peroxide, H2(18)O2, confirm that an oxygen atom is transferred directly from the H2(18)O2 oxidant to the olefin substrate in the predominant pathway. The hydrogen peroxide adduct of this high-oxidation-state manganese complex, Mn(IV)(Me2EBC)(O)(OOH)+, was detected by mass spectra in aqueous solutions prepared from Mn(II)(Me2EBC)Cl2 and excess hydrogen peroxide. A Lewis acid pathway, in which oxygen is transferred to the olefin from that adduct, Mn(IV)(Me2EBC)(O)(OOH)+, is proposed for epoxidation reactions mediated by this novel, non-heme manganese complex. A minor radical pathway is also apparent in these systems.  相似文献   

14.
The lipophilicity of a series of Schiff base ligands and their complexes with nickel(II) and copper(II) has been determined by reversed-phase thin-layer chromatography using binary dioxane-water mobile phase. Chelate ligands were prepared by condensation of diamine and the corresponding beta-diketone. Copper(II) and nickel(II) complexes with chelate ligands containing ethane-1,2-diamine or propane-1,2-diamine as the amine part and pentane-2,4-dione and/or 1-phenylbutane-1,3-dione, pentane-2,4-dione and/or 1,1,1-trifluoropentane-2,4-dione, or 1,1,1-trifluoropentane-2,4-dione and/or 1-phenylbutane-1,3-dione as the beta-diketone part were synthesized. Some of investigated compounds were screened for their in vitro antifungal activity against Sacharomyces cerevisiae and antibacterial activity against Escherichia coli. Chromatographically obtained lipophilicity parameters were correlated both with calculated n-octanol-water partition coefficient C log P and antimicrobial activities. Satisfactory correlations were obtained. Chromatographic data proved to be reliable parameters for describing the lipophilic properties of the investigated compounds. Additionally, the principal components analysis was performed on the data chromatographically obtained. This statistical method was useful for distinguishing compounds and objective comparison of their lipophilicity parameters.  相似文献   

15.
The metal complexes of N, N′‐bis (o‐hydroxy acetophenone) propylene diamine (HPPn) Schiff base were supported on cross‐linked polystyrene beads. The complexation of iron(III), copper(II), and zinc(II) ions on polymer‐anchored HPPn Schiff base was 83.4, 85.7, and 84.5 wt%, respectively, whereas the complexation of these metal ions on unsupported HPPn Schiff base was 82.3, 84.5, and 83.9 wt%. The iron(III) complexes of HPPn Schiff base were octahedral in geometry, whereas copper(II) and zinc(II) ions complexes were square planar and tetrahedral. Complexation of metal ions increased the thermal stability of HPPn Schiff base. Catalytic activity of metal complexes was tested by studying the oxidation of phenol and epoxidation of cyclohexene in the presence of hydrogen peroxide. The polymer‐supported HPPn Schiff base complexes of iron(III) ions showed 73.0 wt% conversion of phenol and 90.6 wt% conversion of cyclohexene at a molar ratio of 1:1:1 of substrate to catalyst and hydrogen peroxide, but unsupported complexes of iron(III) ions showed 63.8 wt% conversion for phenol and 83.2 wt% conversion for cyclohexene. The product selectivity for catechol (CTL) and epoxy cyclohexane (ECH) was 93.1 and 98.3 wt%, respectively with supported HPPn Schiff base complexes of iron(III) ions but was lower with HPPn Schiff base complexes of copper(II) and zinc(II) ions. Activation energy for the epoxidation of cyclohexene and phenol conversion with unsupported HPPn Schiff base complexes of iron(III) ions was 16.6 kJ mol?1 and 21.2 kJ mol?1, respectively, but was lower with supported complexes of iron(III) ions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
New chiral Schiff base complexes have been obtained by condensation of 2,2'-diamino-1,1'-binaphthalene or 1,2-diaminocyclohexane and various salicylaldehydes and by subsequent metalation with manganese, iron, cobalt, nickel, copper, or zinc. The complete (1)H and (13)C NMR characterization of the ligands is reported, as are the X-ray crystal structures of (1R,2R)-(-)-N,N'-bis[3-(N,N-dimethylamino)salicylidene]-trans-1,2-cyclohexanediimine and [(1R,2R)-(-)-N,N'-bis(salicylidene)-trans-1,2-cyclohexanediiminato]copper(II). The new chiral manganese complexes have been evaluated in the oxygenation of prochiral olefins and sulfides using sodium hypochlorite, hydrogen peroxide, or N-methylmorpholine N-oxide/m-chloroperbenzoic acid as oxidant.  相似文献   

17.
Two Bis-β-diketonate zinc (II) complexes were synthesized using 1-(thiophen-2-yl)butane-1,3-dione and 1-(thiophen-2-yl)-3-(thiophen-3-yl)propane-1,3-dione as ligands. By electropolymerization of their thiophenyl groups, the metallopolymers deposited on FTO electrodes were obtained. The main objective was to study the reactivity of these compounds as ROP catalysts for PLA synthesis, using directly the zinc complexes (homogeneous catalysis) and also the modified electrodes with metallopolymers (heterogeneous catalysis). The homogeneous catalysis studies allowed the optimization of the polymerization conditions, such as reaction time, catalyst concentration, and the use of benzyl alcohol as cocatalyst, as well as their influence on the conversion rate, average molecular weight and polydispersity of PLA, using rac-LA and L-LA as monomers. Also, the effect on tacticity and thermal properties were discussed. Finally, the ROP studies using immersed modified electrodes in the polymerization medium were carried out under optimized experimental conditions. These tests were positive for one of the studied compounds, reaching conversions of up to 67%. © 2020 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 557–567  相似文献   

18.
The reactive intermediates and mechanisms of oxygenation of olefins by manganese complexes were investigated by treating olefins with newly synthesized [MnIV(Me2EBC)(OH)2](PF6)2 in the presence and absence of peroxide and by studying its catalytic epoxidation reaction in normal aqueous solution and, individually, with isotopically labeled H218O, 18O2, and H218O2. The manganese oxo species is not the reactive intermediate for the oxygen transfer process mediated by this manganese complex. A novel manganese(IV) peroxide intermediate, MnIV(Me2EBC)(O)(OOH)+, was captured by mass spectrometry and is proposed as the intermediate that oxygenates olefins in this catalytic system.  相似文献   

19.
详细研究了Ti─Si沸石在H_2O_2存在下对氯丙烯的环氧化、苯乙烯的氧化和环己烯的氧化等反应的催化作用.发现上述三种结构的烯烃其主要定向产物并不一致:氯丙烯氧化产物主要为环氧氯丙烷,苯乙烯氧化主要产物为苯乙醛、环己烯氧化主要产物为环己二酮.说明烯烃氧化的主要定向产物的结构依赖于有机底物的结构,并不全都给出环氧产物.在三个反应中,Ti─Si沸石均表现出显著的催化活性,这可能与沸石骨架中钛的存在有关.发现在氯丙烯环氧化反应中,只有TS-1及TS-2表现出环氧化活性.推测沸石骨架位中存在的钛在氧化反应中起重要作用.  相似文献   

20.
Imidazolium‐based ionic liquids that contain perrhenate anions are very efficient reaction media for the epoxidation of olefins with H2O2 as an oxidant, thus affording cyclooctene in almost quantitative yields. The mechanism of this reaction does not follow the usual pathway through peroxo complexes, as is the case with long‐known molecular transition‐metal catalysts. By using in situ Raman, FTIR, and NMR spectroscopy and DFT calculations, we have shown that the formation of hydrogen bonds between the oxidant and perrhenate activates the oxidant, thereby leading to the transfer of an oxygen atom onto the olefin demonstrating the special features of an ionic liquid as a reaction environment. The influence of the imidazolium cation and the oxidant (aqueous H2O2, urea hydrogen peroxide, and tert‐butyl hydrogen peroxide) on the efficiency of the epoxidation of cis‐cyclooctene were examined. Other olefinic substrates were also used in this study and they exhibited good yields of the corresponding epoxides. This report shows the potential of using simple complexes or salts for the activation of hydrogen peroxide, owing to the interactions between the solvent medium and the active complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号