共查询到16条相似文献,搜索用时 94 毫秒
1.
本文通过3,6-二肼基-1,2,4,5-四嗪(DHT)分别与高氯酸和硝酸反应得到2种高氮含能离子盐,并通过X-射线单晶衍射技术对它们的结构进行了表征。(DHT)(NO3)2(1)属于单斜晶系,C2/c空间群,晶胞参数:a=1.300 0(6) nm,b=0.834 9(3) nm,c=1.018 7(5) nm,β=118.89(5)°,Z=4;(DHT)(ClO4)2(2)属于正交晶系,P21212空间群,晶胞参数:a=0.980 4(4) nm,b=1.074 7(4) nm,c=0.532 5(2) nm,Z=2。采用DSC和TG-DTG技术研究了这两种含能离子盐的热分解机理,并对这两种含能离子盐的非等温动力学、爆热及感度进行了测试分析。研究表明这两种含能离子盐在敏感型含能材料领域具有潜在的应用前景。 相似文献
2.
3,6-二肼基-1,2,4,5-四嗪的晶体结构及理论研究 总被引:2,自引:0,他引:2
通过缓慢蒸发溶剂法培养得到3, 6-二肼基-1, 2, 4, 5-四嗪(DHT)的单晶, 用X-射线单晶衍射仪进行了结构测定. 该晶体属于单斜晶系, P2(1)/c空间群, a=4.032 (4) ?, b=5.649 (6) ?, c=12.074 (14) ?. β=99.32°, Z=2, V=271.4(5) ?3. DHT分子中肼基N原子与四嗪环基本位于同一平面呈现轴对称结构, 分子中的大量氢键使之形成箭尾形排列的三维网络结构. 通过实验测得DHT的燃烧热为1787kJ?mol-1, 5s爆发点为454 K. 在DFT-B3LYP/6-311G*水平下对DHT的电子结构和自然键轨道进行了分析. 通过原子化能的方法计算得到DHT的标准生成热为1075 kJ?mol-1, 与实验值接近. 爆轰性能计算表明, DHT在密度为1.64 g?cm-3时, 爆速和爆压分别为9.27 km?s-1和36.02 GPa, 高于TNT和HMX. 相似文献
3.
以水合肼和硝酸胍为原料,经过环合、氧化和肼化,得到3-(3,5-二甲基-1H-吡唑-1-基)-6-肼基-1,2,4,5-四嗪(4),以此为原料和不同芳香醛发生腙化反应,得到系列1-芳基亚甲基-2-(6-(3,5-二甲基-1H-吡唑-1-基)-1,2,4,5-四嗪-3-基)肼(5),产物经元素分析、1H NMR、IR和MS表征。所合成的系列化合物抗菌活性测试表明,它们对大肠杆菌、金黄色葡萄球菌、枯草杆菌等3种细菌表现出一定程度的抑制活性。 相似文献
4.
3,6-二肼基-1,2,4,5-四嗪的热行为、比热容及绝热至爆时间 总被引:1,自引:0,他引:1
利用差示扫描量热法(DSC)、热重-微商热重法(TG-DTG)研究了3,6-二肼基-1,2,4,5-四嗪(DHT)的热行为, 其分解过程可分为两个放热的分解过程, 且热分解反应的表观活化能分别为154.8和123.4 kJ·mol-1, 指前因子分别为1016.63和109.48 s-1. DHT热爆炸的临近温度为426.10 K. 同时, 利用微量热法和理论计算方法研究了DHT的比热容, 298.15 K时的标准摩尔比热容为183.61 J·mol-1·K-1. 计算获得了DHT的绝热至爆时间为263.84-297.58 s之间的某一值. 相似文献
5.
6.
在B3LYP/aug-cc-pvDZ理论水平上研究了CN,NO2,NH2,N3,N2H,NHNH2,N4H和N4H3含氮取代基取代1,2,4,5-四嗪环上的两个氢原子生成的衍乍物,预测了它们的分f构犁、分解能及含能性质.对衍生物分解能的研究结果表明.CN取代的衍生物的分解能比未取代时更高,而其余基团的取代使分解能降低.生成热的研究显示取代基化合物的生成热越大,取代1,2,4,5-四嗪中的氢原子后生成衍生物的牛成热也越大;CN,N3和N4H取代的1,2,4,5-四嗪衍生物的单位原子生成热在83.1~95.2 kJ,比文献报道的三叠氮基-均三嗪的(70.2 kJ)更高;N4H,N3,N4H3,N2H和CN取代的1,2,4,5-四嗪衍生物,生成热在904.9~1496.6 kJ·mol-1,但N4H和N4H3取代的衍生物分解能较小,稳定性较差. 相似文献
7.
以乙腈和芳基腈为原料, 经过醚化、环化和还原三步方便且有效地合成了3-芳基-6-甲基-1,6-二氢-1,2,4,5-四嗪, 并在此基础上合成了一系列新的3-芳基-6-甲基-1,6-二氢-1,2,4,5-四嗪衍生物, 通过元素分析, 1H NMR, IR和HRMS对这些化合物进行了表征. 对化合物N-邻甲基苯-3-苯基-6-甲基-1,6-二氢-1,2,4,5-四嗪-1-甲酰胺(5a)的X射线晶体衍射研究表明: 其属于单斜晶系, P21 /c空间群, 晶胞参数a=1.3941(6) nm, b=0.5675(2) nm, c=2.0614(8) nm; α=γ=90°, β=102.055(6)°; V=1.5949(11) nm3, 此类化合物的四嗪环采用不对称船式结构, 且具有同芳香性. 相似文献
8.
3,6-二叠氮基-1,2,4,5-四嗪的合成及理论研究 总被引:4,自引:0,他引:4
以3,6-双(3,5-二甲基吡唑基)-1,2,4,5-四嗪为原料, 经过肼解反应和重氮化反应, 制得了3,6-二叠氮基-1,2,4,5-四嗪(DAT). 在DFT-B3LYP/6-31G*水平下求得了DAT的分子几何、IR光谱和热力学性质. 计算模拟IR光谱和实测IR光谱的对比表明DAT在固态下不发生叠氮-四唑互变异构反应. 根据IR光谱计算了DAT的热容、焓、熵等热力学参数, 也给出了这些参数和温度T之间的函数关系. 在不破坏四嗪环和叠氮基的原则下通过构建等键反应求得了DAT的精确生成热为1088 kJ•mol—1. 爆轰性能计算表明DAT爆速D=8.45 km•s-1, 爆压P=31.3 GPa, 高于TNT和HMX. 相似文献
9.
采用C++自编译程序及组合原理,设计并筛选出一种未见报道的新型富氮类高能量密度化合物-3,6-双(3,5.二硝基.1,2,4-三唑.1)-1,2,4,5-四嗪-1,4-二氧化物,用B3LYP法,在6-31G**基组水平上得到该化合物全优化构型;在振动分析的基础上求得体系的振动频率、IR谱;通过键级分析得到热解引发键的键离解能(BDE);采用Monte-Carlo 方法预估了密度;设计等键等电子反应计算了生成焓;运用Kamlet-Jacobs公式预测爆速、爆压和爆热;运用Keshavarz 等推导的预估撞击感度H50的公式预测了撞击感度性能;并利用逆合成分析法设计其合成路线.结果表明:该化合物存在8个强吸收峰,校正后的热解引发键的BDE为264KJ·mol-1,稳定性较优;密度1.955 g·cm-3、生成焓901.72 kJ·mol-1、爆速9191.48 m·s-1、爆压39.32 GPa、爆热6705.15 j·g-1;撞击感度H50为55.85cm,低于黑索金(RDX)和奥克托今(HMx);以上性能均达到了高能量密度化合物的标准,且该化合物设计合成路线步骤较少、原料易得,有望得到广泛应用. 相似文献
10.
11.
3,6-二氨基-1,2,4,5-四嗪二聚体分子间相互作用的理论研究 总被引:3,自引:0,他引:3
在DFT-B3LYP/6-31G(d)水平下,求得3,6-二氨基-1,2,4,5-四嗪二聚体势能面上3种优化几何构型和电子结构。经基组叠加误差(BSSE)和零点能(ZPE)校正,求得分子间最大相互作用能为-38.88kJ/mol。电荷分布与转移分析表明,二子体系间的电荷转移很少,但接触点上氮原子和氢原子电荷变化比较大。由自然键轨道(NBO)分析揭示了分子间相互作用的本质。对优化构型进行振动分析,并基于统计热力学求得200.0~800.0 K温度范围从单体形成二聚体的热力学性质变化,发现二聚主要由强氢键所贡献,二聚过程在较低温度或常温下能自发进行。 相似文献
12.
Qing Liu Bin Yang Jin Yang Xianbo Zhang Haixia Ma 《Journal of Coordination Chemistry》2017,70(13):2249-2260
We synthesized two calcium salts of 3,6-bis(1H-1,2,3,4-tetrazol-5-yl-amino)-1,2,4,5-tetrazine (BTATz): [Ca2(BTATz)2(H2O)8·6H2O] (1) and Ca(BTATz)(phen)(H2O)5·4H2O (2). Complexes 1 and 2 were characterized by elemental analysis, Fourier transform infrared spectrometry, and single-crystal X-ray diffraction. Structural analysis revealed that Ca(II) was present in different coordination structures in the two complexes. Complex 1 exhibited a symmetric octahedral coordination that included three nitrogens and five water molecules. Complex 2 formed an asymmetric seven-coordinate structure with calcium connected to nitrogen in BTATz and to oxygens. The thermal behaviors of 1 and 2 were characterized via differential scanning calorimetry and thermogravimetry–differential thermal gravimetry. The peak thermal decomposition temperatures of 1 and 2 was 557.39 and 573.86 K, respectively. The kinetic equations of the main exothermic decomposition reaction were also derived. Moreover, the thermal safety of the complexes was evaluated by calculating some important thermodynamic parameters, such as self-accelerated decomposition temperature, thermal ignition temperature, and critical temperature of thermal explosion. Results indicated that both complexes exhibit good potential as a propellant component. 相似文献
13.
Kinga Wzgarda-Raj Justyna Dominikowska Sławomir Wojtulewski Agnieszka J. Rybarczyk-Pirek 《Acta Crystallographica. Section C, Structural Chemistry》2023,79(2):52-60
The results of the X-ray structure analysis of three novel 3,6-bis(pyridin-2-yl)-1,2,4,5-tetrazine cocrystals are presented. These are 3,6-bis(pyridin-2-yl)-1,2,4,5-tetrazine–2,4,6-tribromophenol (1/2), C12H8N6·2C6H3Br3O, 3,6-bis(pyridin-2-yl)-1,2,4,5-tetrazine–isonicotinic acid N-oxide (1/2), C12H8N6·2C6H5NO3, and 3,6-bis(pyridin-2-yl)-1,2,4,5-tetrazine–4-nitrobenzenesulfonamide (1/1), C12H8N6·C6H6N2O4S. Special attention is paid to a conformational analysis of the title tetrazine molecule in known crystal structures. Quantum chemistry methods are used to compare the energetic parameters of the investigated conformations. A structural analysis of the hydrogen and halogen bonds with acceptor aromatic tetrazine and pyrazine rings is conducted in order to elucidate factors responsible for conformational stability. 相似文献
14.
15.
Bozhou Wang Weipeng Lai Qian Liu Peng Lian Yongqiang Xue 《Frontiers of Chemistry in China》2009,4(1):69-74
3,6-bis(1H-1,2,3,4-tetrazol-5-yl-amino)- 1,2,4,5-tetrazine (BTATz) was synthesized by the condensation of triaminoguanidinium
nitrate with 2,4-pentanedione, followed by oxidation and substitution reaction. The product was characterized by elemental
analysis, IR, NMR spectrometry and DSC analysis. Instead of nitrogen dioxide/N-methylpyrrolidone, acetic acid/sodium nitrite
was used as the oxidizer during the oxidation. Thus, the cost was reduced and the process was simplified. The theoretical
properties of BTATz were estimated by a B3LYP method based on a 6-31G(d,p) basis set, and the stable geometric configuration
and bond order were obtained. The vibrational frequencies, IR spectrum and thermodynamic properties under different temperatures
were obtained from vibrational analysis and the relationship between temperature and thermodynamics properties was deduced.
Pyrolysis mechanism of BTATz was discussedand the transition state and activation energy of ring opening reaction of the tetrazole
were deduced.
__________
Translated from Chinese Journal of Organic Chemistry, 2008, 28(3) (in Chinese) 相似文献
16.
The synthesis of high-nitrogen energetic material 3,3′-azobis (6-amino-1,2,4,5-tetrazine) (DAAT) from 3,6-bis (3,5-dimethylpyrazol-1-yl)-1,2,4,5-tetrazine
by a four-step reaction is described. The thermal properties of DAAT were investigated by using Differential scanning calorimetry
(DSC), Pressure differential scanning calorimetry (PDSC) and Thermogravimetry (TG) techniques. Kinetic parameters of decomposition
and mechanism functions were obtained. The results showed that DAAT is thermally stable up to 283°C and gives an exotherm
maximum at 320°C with ΔH of 1974.33 J·g−1, which is higher than HMX. The values of E
a are 209.69 and 208.77 kJ·mol−1 by the methods of Kissinger and Ozawa, respectively. The decomposition rate of DAAT is sensitive to pressure and in direct
proportion to atmosphere pressure. The explosive performances of DAAT were calculated theoretically by VLW equation-of-state
(EOS) and the results showed that several explosive formulations based on DAAT have high-energy and insensitive performance.
Translated from Huaxue Tongbao (Chemistry), 2006, 69(9): 685–689 (in Chinese) 相似文献