首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Utilizing the quantum statistical method and applying the new state density equation motivated by generalized uncertainty principle in quantum gravitaty, we avoid the difficulty in solving wave equation and directly calculate the partition function ofbosonic and fermionic field on the background of rotating and charged black string. Then near the cosmological horizon, entropies of bosonic and fermionic field are calculated on the background of black string. When constant λ introduced ingeneralized uncertainty principle takes a proper value, we derive Bekenstein-Hawking entropy and the correction value corresponding cosmological horizon on the background of rotating and charged black string. Because we use the new state density equation, in our calculation there are not divergent term and small massapproximation in the original brick-wall method. From the view of quantum statistic mechanics, the correction value to Bekenstein-Hawking entropy of the black string is derived. It makes people deeply understand the correction value to the entropyof the black string cosmological horizon in non-spherical coordinate spacetime.  相似文献   

2.
The generalized uncertainty relation is introduced to calculate quantum statistic entropy of a black hole. By using the new equation of state density motivated by the generalized uncertainty relation, we discuss entropies of Bose field and Fermi field on the background of the five-dimensional spacetime. In our calculation, we need not introduce cutoff. There is not the divergent logarithmic term as in the original brick-wall method. And it is obtained that the quantum statistic entropy corresponding to black hole horizon is proportional to the area of the horizon. Further it is shown that the entropy of black hole is the entropy of quantum state on the surface of horizon. The black hole's entropy is the intrinsic property of the black hole. The entropy is a quantum effect. It makes people further understand the quantum statistic entropy.  相似文献   

3.
The generalized uncertainty relation is introduced to calculate the quantum statistical entropy corresponding to cosmic horizon. By using the new equation of state density motivated by the generalized uncertainty relation, we discuss entropies of Bose field and Fermi field on the background of five-dimensional spacetime. In our calculation, we need not introduce cutoff. There is no divergent logarithmic term in the original brick-wall method. And it is obtained that the quantum statistical entropy corresponding to cosmic horizon is proportional to the area of the horizon. Further it is shown that the entropy corresponding to cosmic horizon is the entropy of quantum state on the surface of horizon. The black hole’s entropy is the intrinsic property of the black hole. The entropy is a quantum effect. In our calculation, by using the quantum statistical method, we obtain the partition function of Bose field and Fermi field on the background of five-dimensional spacetime. We provide a way to study the quantum statistical entropy corresponding to cosmic horizon in the higher-dimensional spacetime. Supported by the National Natural Science Foundation of China (Grant No. 10374075) and the Natural Science Foundation of Shanxi Province, China (Grant No. 2006011012)  相似文献   

4.
Using the quantum statistical method, the difficulty of solving the wave equation on the background of the black hole is avoided. We directly solve the partition functions of Bose and Fermi field on the background of an axisymmetric Kerr-Newman black hole using the new equation of state density motivated by the generalized uncertainty principle in the quantum gravity. Then near the black hole horizon, we calculate entropies of Bose and Fermi field between the black hole horizon surface and the hypersurface with the same inherent radiation temperature measured by an observer at an infinite distance. In our results there are not cutoffs and little mass approximation introduced in the conventional brick-wall method. The series expansion of the black hole entropy is obtained. And this series is convergent. It provides a way for studying the quantum statistical entropy of a black hole in a non-spherical symmetric spacetime.  相似文献   

5.
轴对称黑洞的量子统计熵   总被引:1,自引:0,他引:1       下载免费PDF全文
张丽春  胡双启  李怀繁  赵仁 《物理学报》2008,57(6):3328-3332
避开了求解黑洞背景下波动方程的因难,应用量子统计方法,通过应用在量子引力中、由广义测不准关系得出的新态密度方程,直接求解轴对称Kerr黑洞背景下玻色场和费米场的配分函数.然后,在视界附近计算黑洞背景下玻色场和费米场的熵.得到用收敛级数表达的黑洞熵.在计算中不存在用brick wall模型计算黑洞熵时出现的发散项和小质量近似,使人们对非球对称时空中黑洞的统计熵有更深入的认识. 关键词: 量子统计 非球对称时空 广义测不准关系 黑洞熵  相似文献   

6.
黄海  贺锋  孙航宾 《物理学报》2012,61(11):110403-110403
利用广义不确定关系修正的态密度方程并采用Wentzel-Kramers-Brillouin (WKB) 近似方法, 计算了Reissner-Nordström-de Sitter (RNdS) 黑洞时空中标量场的统计力学熵. 结果表明, 由这种方法得到的黑洞熵与它的内、外视界面积和宇宙视界面积之和成正比, 这与采用其他方法所得的结果一致, 从而揭示了黑洞熵与视界面积之间的内在联系, 也进一步表明了黑洞熵是视界面上量子态的熵, 是一种量子效应.  相似文献   

7.
The generalized uncertainty relation is introduced to calculate entropy of the black hole. By using quantum statistical method, we directly obtain the partition function of Bose and Fermi field on the background of the plane symmetry black hole. Then we calculate the entropy of Bose and Fermi field on the background of black hole near the horizon of the black hole. In our calculation, we need not introduce cutoff. There are not the left out term and the divergent logarithmic term in the original brick-wall method. And it is obtained that the entropy of the black hole is proportional to the area of the horizon. The inherent contact between the entropy of black hole and the area of horizon is opened out. Further it is shown the entropy of black hole is entropy of quantum state on the surface of horizon. The black hole’s entropy is the intrinsic property of the black hole. The entropy is a quantum effect.  相似文献   

8.
赵仁  武月琴  张丽春 《中国物理 B》2009,18(5):1749-1754
<正>By using the entanglement entropy method,this paper calculates the statistical entropy of the Bose and Fermi fields in thin films,and derives the Bekenstein-Hawking entropy and its correction term on the background of a rotating and charged black string.Here,the quantum field is entangled with quantum states in the black string and thin film to the event horizon from outside the rotating and charged black string.Taking into account the effect of the generalized uncertainty principle on quantum state density,it removes the difficulty of the divergence of state density near the event horizon in the brick-wall model.These calculations and discussions imply that high density quantum states near the event horizon of a black string are strongly correlated with the quantum states in a black string and that black string entropy is a quantum effect.The ultraviolet cut-off in the brick-wall model is not reasonable.The generalized uncertainty principle should be considered in the high energy quantum field near the event horizon.From the viewpoint of quantum statistical mechanics,the correction value of Bekenstein-Hawking entropy is obtained.This allows the fundamental recognition of the correction value of black string entropy at nonspherical coordinates.  相似文献   

9.
将广义不确定关系引入新的态密度方程,采用WKB近似方法,对含整体单极黑洞Dirac场的熵进行了直接计算,所得黑洞熵与它的视界面积成正比,以此揭示了黑洞熵是其视界面处量子态的熵.与brick-wall模型方法不同,该结果不需要取任何截断.同时表明,用此方法不仅可以计算黑洞标量场的熵,而且可以计算Dirac场的熵.  相似文献   

10.
黄海  贺锋  孙航宾 《物理学报》2012,61(11):112-116
利用广义不确定关系修正的态密度方程并采用Wentzel-Kramers-Brillouin(WKB)近似方法,计算了Reissner-Nordstrm-de Sitter(RNdS)黑洞时空中标量场的统计力学熵.结果表明,由这种方法得到的黑洞熵与它的内、外视界面积和宇宙视界面积之和成正比,这与采用其他方法所得的结果一致,从而揭示了黑洞熵与视界面积之间的内在联系,也进一步表明了黑洞熵是视界面上量子态的熵,是一种量子效应.  相似文献   

11.
Using the thin film brick-wall model,taking into account the effect of the generalized uncertainty principle on the equation of the density of the states, we calculate the free energy and entropy of schwarzschild black hole due to scalar field, we obtain the entropy proportional to the event horizon area without cutoff. This implies that quantum theory of gravity can remove the divergence of the state density on the event horizon and avoid the cutoff in the original brick-wall model, these results also mean that the thin film brick-wall model is universal. PACS: 0420;9760L.  相似文献   

12.
The properties of the thermal radiation are discussed by using the new equation of state density motivated by the generalized uncertainty relation in the quantum gravity. There is no burst at the last stage of the emission of dilatonic black hole. When the new equation of state density is utilized to investigate the entropy of a bosonic field and fermionic field outside the horizon of a static dilatonic black hole, the divergence appearing in the brick wall model is removed, without any cutoff. It is derived from the contribution of the vicinity of the horizon that the entropy is proportional to the horizon area.  相似文献   

13.
胡双启  赵仁 《中国物理》2005,14(7):1477-1481
通过应用在量子引力中、由广义测不准关系得出的新的态密度方程,直接求解轴对称Kerr黑洞背景下Bose场和Fermi场的配分函数.然后,在黑洞视界附近计算黑洞背景下Bose场和Fermi场的熵.在所得结论中不存在用brick wall模型计算黑洞熵时出现的发散项,也不存在紫外因子.得到黑洞熵与视界面积成正比的结论.  相似文献   

14.
By using the new equation of state density derived from the generalized uncertainty relation, the number of the quantum states near event horizon is obtained, with which then the information entropy of static spherically symmetric black holes has been discussed. It is found that the divergent integral of quantum states near the event horizon can be naturally avoided if using the new equation of state density without introducing the ultraviolet cut-off. The information entropy of black holes can be obtained precisely by the residue theorem, which is shown to be proportional to the horizon area. The information entropy of black holes obtained agrees with the Bechenstein--Hawking entropy when the suitable cutoff factor is adopted.  相似文献   

15.
刘成周  赵峥 《物理学报》2006,55(4):1607-1615
按纠缠熵方法,计算了Gibbons-Maeda(G-M)dilaton黑洞视界外部与黑洞内量子态纠缠的一薄层内量子场的统计熵,得到了G-M dilaton黑洞的Bekenstein-Hawking熵.用广义不确定原理对量子态密度进行修正,克服了brick-wall模型中视界附近态密度的发散困难,该薄层可以紧贴在事件视界上.对brick-wall外部量子场中与黑洞内自由度有关联的自由度统计熵进行了计算,并把结果与brick-wall内量子场的熵进行比较分析,显示两结果具有与视界面积成正比的一致性,但后者能更 关键词: 纠缠熵 黑洞 广义不确定原理 截断  相似文献   

16.
By using the method of quantum statistics, we directly derive the partition functions of bosonic and fermionic field in Kaluza—Klein black hole with axial symmetry. Then via the improved brick-wall method, membrane model, we obtain that the entropy of bosonic and fermionic field in black hole is proportional to the area of horizon. In our result, the stripped term and the divergent logarithmic term no longer exist. The problem that the state density is divergent around the horizon doesn't exist either. We also give the influence of the spining degeneracy of particles on the entropy of black hole. We offer a new, simple, and direct way of calculating the entropy of different complicated black holes.  相似文献   

17.
采用由广义不确定关系得到的新的态密度方程 ,研究了Schwarzchild deSitter时空背景下黑洞宇宙视界的熵 .利用新的态密度方程 ,克服了用brick wall模型方法计算黑洞熵 ,在消除紫外发散需取截断的不完善之处 ,以此揭示了黑洞熵与其视界面积成正比这一内在联系 ,进一步表明黑洞熵是视界面处量子态的熵  相似文献   

18.
Taking WKB approximation to solve the scalar field equation in the Garfinkle-Horowitz-Strominger (GHS) black hole spacetime, we can get the classical momenta. Substituting the classical momenta into state density equation corrected by the generalized uncertainty principle, we will obtain the number of quantum states with energy less than ω. It is convergent in the neighborhood of the horizon. Then, it is used to calculate the statistical-mechanical entropy of the scalar field in the GHS black hole spacetime. The calculation shows that the entropy is proportional to the horizon area.  相似文献   

19.
广义测不准关系与三维BTZ黑洞熵   总被引:1,自引:0,他引:1       下载免费PDF全文
赵仁  张丽春  李怀繁 《物理学报》2009,58(4):2193-2197
通过应用在量子引力中,由广义测不准关系得出的新的态密度方程,研究三维BTZ背景下黑洞的熵.当取广义测不准关系中引入的,具有Planck量级与空间维数有关的常数λ为特定值时,得到BTZ黑洞Bekenstein-Hawking 熵和修正项.由于利用新的态密度方程,在计算中不存在用brick-wall模型计算黑洞熵时出现的发散项和小质量近似.所得结论,从量子统计力学角度给出了黑洞Bekenstein-Hawking 熵的修正值,使人们对黑洞熵的修正值有更深入的认识. 关键词: 广义测不准关系 量子统计 BTZ黑洞熵  相似文献   

20.
We consider corrections to all orders in the Planck length on the quantum state density, and calculate the statistical entropy of the scalar field on the background of the Bardeen regular black hole numerically. We obtain the distribution of entropy which is inside the horizon of black hole and the contribution of the vicinity of horizon takes a great part of the whole entropy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号