首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single crystals of Ta4S1.5Se7.5I8 are obtained by heating Ta, S, Se and I2 at 300 °C in 4.0:1.0:8.0:4.4 molar ratio. The structure was determined by X-ray analysis and consists of molecular clusters [Ta44-S)(μ2-QaxSeeq)4I8] (Q ≈ Se0.87S0.13). The tantalum atoms form a square with long Ta…Ta distances (3.26–3.32 Å), with four dichalcogenide ligands bridging the Ta–Ta edges and a sulfur atom capping the square. Each Ta atom has two terminal iodine atoms. Raman spectroscopy study shows the presence of the characteristic absorption band at 396 cm?1 which is due to the Ta4–μ4-S vibrations. Cyclic voltammetry shows that Ta4S1.5Se7.5I8 in solid state undergoes quasi-reversible one-electron oxidation which is metal-centered.  相似文献   

2.
The reaction of Rb2S3, Ta and S in a 1.3 : 1 : 5.6 molar ratio at 400 °C yields red‐orange crystals of the new ternary compound Rb6Ta4S22 being the first tantalum polysulfide containing the dimeric complex anion [Ta4S22]6–. The polysulfide anions are composed of two Ta2S11 subunits which are linked to Ta4S22 units via terminal sulfur ligands. The Ta5+ centers are coordinated by S22– and S2– ligands according to [(Ta22‐η21‐S2)32‐S2)(S)2)22‐η11‐S2)]6–. Every Ta5+ ion is surrounded by seven sulfur ions forming a strongly distorted pentagonal bipyramid. In the crystal structure the discrete [Ta4S22]6– anions are stacked parallel to the crystallographic b‐axis. The Rb+ cations are located between these stacks. Rb6Ta4S22 crystallizes in the monoclinic space group P21/c (No. 14) with a = 11.8253(9) Å, b = 7.9665(4) Å, c = 19.174(2) Å, β = 104.215(9)°, V = 1751.0(2) Å3, Z = 2.  相似文献   

3.
4.
The new compounds K6Nb4S22 and K6Ta4S22 ( I ) have been synthesised by the reaction of NbS2 or Ta metal in a K2S3 flux. Using TaS2 as educt a second modification of K6Ta4S22 ( II ) is obtained. K6Nb4S22 and K6Ta4S22 (form I ) crystallise in the monoclinic space group C2/c with a = 35.634 (2)Å, b = 7.8448 (4)Å, c = 12.1505 (5)Å, β = 100.853 (5)°, V = 3335.8 (3)Å3, and Z = 4 for K6Nb4S22 and a = 35.563 (7) Å, b = 7.836 (2)Å, c = 12.139 (2)Å, β = 100.56 (3)°, V = 3325.5 (2)Å3, and Z = 4 for K6Ta4S22 ( I ). The second modification K6Ta4S22 (form II ) crystallises in the monoclinic space group P21/c with a = 7.5835 (6)Å, b = 8.7115 (5)Å, c = 24.421 (2)Å, β = 98.733 (9)°, V = 1594.6 (2)Å3, and Z = 2. The structures consist of [M4S22]6— anions composed of two M2S11 sub‐units which are linked into M4S22 units via terminal sulfur ligands. The anions are well separated by the K+ cations. Differences between the structures of the title compounds and those with the heavier alkali cations Rb+ and Cs+ are caused by the different arrangement of the [M4S22]6— anions around the cations and the different S2—/S22— binding modes. The thermal behaviour of both modifications was investigated using differential scanning calorimetry (DSC). From these investigations there is no hint for a polymorphic transition between the two forms. After heating crystals of form II above the melting point and cooling the melt to room temperature a crystalline powder of form I can be isolated.  相似文献   

5.
6.
On Polychalcogenides of Thallium with M2Q11 Groups as a Structural Building Block. I Preparation, Properties, X‐ray Diffractometry, and Spectroscopic Investigations of Tl4Nb2S11 and Tl4Ta2S11 The new ternary compounds Tl4Nb2S11 and Tl4Ta2S11 were prepared using Thallium polysulfide melts. Tl4M2S11 crystallises isotypically to K4Nb2S8.9Se2.1 in the triclinic space group P 1 with a = 7.806(2) Å, b = 8.866(2) Å, c = 13.121(3) Å, α = 72.72(2)°, β = 88.80(3)°, and γ = 85.86(2)° for M = Nb and a = 7.837(1) Å, b = 8.902(1) Å, c = 13.176(1) Å, α = 72.69(1)°, β = 88.74(1)°, and γ = 85.67(1)° for M = Ta. The interatomic distances as well as angles within the [M2S11]4– anions are similar to those of the previously reported data for analogous alkali metal polysulfides. Significant differences between Tl4M2S11 and A4M2S11 (A = K, Rb, Cs) are obvious for the shape of the polyhedra around the electropositive elements. The two title compounds melt congruently at 732 K (M = Nb) and 729 K (M = Ta). The optical band gaps were estimated as 1.26 eV for Tl4Nb2S11 and as 1.80 eV for the Tantalum compound.  相似文献   

7.
The tungsten iodide cluster W4I10 is obtained by thermal conversion of W4I13. The crystal structure of W4I10 was solved and refined by means of powder X‐ray diffraction techniques. The structure is based on a tetrahedral tungsten cluster core, two face capping, five edge‐bridging, and four apical iodido ligands of which two have bridging functionalities with adjacent clusters. Cluster chains in the structure are arranged following the motive of a kinked chain.  相似文献   

8.
Synthesis, Structure, and Properties of the Tantalum‐rich Silicide Chalcogenides Ta15Si2QxTe10–x (Q = S, Se) The quaternary tantalum silicide chalcogenides Ta15Si2QxTe10–x (Q = S, Se) are accessible from proper, compacted mixtures of the respective dichalcogenides, silicon and elemental tantalum at 1770 K in sealed molybdenum tubes. The structures were determined from the strongest X‐ray intensities of fibrous crystals with cross sections of about 3 μm and confirmed by fitting the profile of single phase X‐ray diffractograms. The phases Ta15Si2S3.5Te6.5 and Ta15Si2Se3.5Te6.5 crystallize in the monoclinic space group C2/m with two formula units per unit cell, a = 2393.7(1) pm, b = 350.08(2) pm, c = 1601.2(1) pm, β = 124.700(4)°, and a = 2461.3(2) pm, b = 351.70(2) pm, c = 1601.7(1) pm, β = 124.363(5)°, respectively. Tri‐capped trigonal prismatic Ta9Si clusters stabilized by encapsulated Si atoms can be seen as the characteristic unit of the structure. The clusters are fused into twin columns which are connected by additional Ta atoms, thus forming corrugated layers. The remaining valences at the surfaces of the layered Ta–Si substructure are saturated by those of chalcogen atoms which are coordinated only from one side by three, four or five Ta atoms. Few bridging covalent Ta–S–Ta and Ta–Se–Ta bonds and, otherwise, dispersive interactions between the Q atoms hold these nearly one nanometer wide slabs together. The phases are moderate metallic conductors. There is no evidence for any electronic instability within 10–310 K in spite of the high anisotropy of the structures.  相似文献   

9.
Methanolothermal reaction of [MnCl3(9‐ane‐N3)] with As2Se3 at 150 °C in the presence of Cs2CO3 affords violet‐coloured [Mn(9‐ane‐N3)2]As6Se5 ( 1 ). Its novel tricyclic selenidoarsenate(I,II) anion [As6Se5]2? contains two five‐membered [As3As(Se)Se] rings that are symmetry‐related by a crystallographic C2 axis passing through the common AsI‐AsI bond between their respective first two ring members. The adjacent AsI atoms in the individual rings are bridged by the Se atom of the third [As4Se] ring.  相似文献   

10.
The new ternary compound Tl4Ta2Se11 was prepared in a melt of thallium polyselenides applying elemental tantalum. It crystallises in the triclinic space group P1¯ with a = 7.996(1) Å, b = 9.866(1) Å, c = 13.668(2) Å, α = 73.03(1)°, β = 89.21(2)° and γ = 85.72(1)°. Tl4Ta2Se11 is the first polyselenide with discrete complex [M2Se11]4— anions. Every Ta atom is in a sevenfold environment of Se atoms to form a distorted pentagonal bi‐pyramid. The two TaSe7 polyhedra have a face in common thus yielding the [Ta2Se11]4— unit. In the structure, the anions are well separated by the Tl1+ cations. An assignment of the different vibration modes in the IR and Raman spectra is given based on density functional calculations.  相似文献   

11.
The rhenium cluster thiobromide Cs1.95(1)Re6S5.82(3)Br8.19(3), belonging to the solid solution Cs2Re6S6Br8–CsRe6S5Br9, crystallizes in the trigonal system (P31c, = 10.001(5) Å and c = 14.676(5) Å). It is built up from [Re6L 8 i ]Br 6 a cluster units in which sulphur and bromine are randomly distributed on inner position (Li). From the structural refinement performed using single-crystal X-ray diffraction data, the isomers of the [Re6Si 6Br 2 i ] and [Re6S 5 i Br 3 i ] cluster cores present in the structure have been unambiguously determined, due to the non-centro symmetry of the structure. Density functional theory calculations have been performed for all possible di- and tri-substituted isomers in order to confirm experimental analyses. Slight differences between the stability of di-substituted and tri-substituted cluster unit isomers built from Mo6 cluster and Re6 clusters are evidenced.  相似文献   

12.
The metathetical reactions between SnBr4 and Li2[E'C(PPh2E)2] in toluene produce the homoleptic tin(IV) complexes Sn[E′C(PPh2E)2]2 [E = E′ = S ( 1b ); E = S, E′ = Se ( 1c )], which were isolated as red crystals and structurally characterized by X‐ray crystallography. The metrical parameters of these octahedral complexes are compared with those of the all‐selenium analog Sn[E′C(PPh2E)2]2 (E = E′ = Se, 1a ), which was prepared previously by a different route.  相似文献   

13.
The mixed‐valent oxotantalate Eu1.83Ta15O32 was prepared from a compressed mixture of Ta2O5 and the metals in a sealed Ta ampoule at 1400 °C. The crystal structure was determined by means of single crystal X‐ray diffraction: space group R3¯, a = 777.2(6) pm and c = 3523.5(3) pm, Z = 3, 984 symmetrically independent reflections, 83 variables, RF = 0.027 for I > 2σ (I). The structure is isotypic to Ba2Nb15O32. The salient feature is a [Ta(+8/3)6O12iO6a] cluster consisting of an octahedral Ta6 core bonded to 12 edge‐bridging inner and six outer oxygen atoms. The clusters are arranged to slabs which are sandwiched by layers of [Ta(+5)3O13] triple octahedra. Additional Ta(+5) and Eu(+2) atoms provide the cohesion of these structural units. Twelve‐fold coordinated Eu(+2) atoms are situated on a triply degenerate position 33 pm displaced from the threefold axis of symmetry. A depletion of the Eu(+2) site from 6 to 5.5 atoms per unit cell reduces the number of electrons available for Ta‐Ta bonding from 15 to 14.67 electrons per cluster. Between 125 and 320 K Eu1.83Ta15O32 is semi‐conducting with a band gap of 0.23 eV. The course of the magnetization is consistently described with the Brillouin function in terms of a Mmol/(NAμB) versus B/T plot in the temperature range 5 K — 320 K and at magnetic flux densities 0.1 T — 5 T. At moderate flux densities (< 1 T) the magnetic moment agrees fairly well with the expected value of 7.94 μB for free Eu (2+) ions with 4f7 configuration in 8S7/2 ground state. Below 5 K, anisotropic magnetization measurements at flux densities B < 1 T point to an onset of an antiferromagnetic ordering of Eu spins within the layers and an incipient ferromagnetic ordering perpendicular to the layers.  相似文献   

14.
The aqueous solution chemistry of niobium is underexplored, and well characterized aqua complexes are scarce. In this contribution, a new niobium aqua complex was obtained by treatment of Zn‐reduced ethanolic solution of NbCl5 with HCl in the presence of a selenide source (ZnSe). This is the first example of selenium containing aqua complex of niobium. The yellow‐green aqua complex was isolated by cation‐exchange chromatography and transformed into corresponding isothiocyanate complex by ligand exchange, which was crystallized as (PyH)4.5[H1.5Nb4SeO5(NCS)10] · 0.5H2O. X‐ray structural analysis revealed a metal‐metal bonded tetranuclear {Nb44‐Se)(μ2‐O)5}4+ core with a capping μ4‐Se ligand.  相似文献   

15.
Cubic [Ta6Br12(H2O)6][CuBr2X2]·10H2O and triclinic [Ta6Br12(H2O)6]X2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O (X = Cl, Br, NO3) cocrystallize in aqueous solutions of [Ta6Br12]2+ in the presence of Cu2+ ions. The crystal structures of [Ta6Br12(H2O)6]Cl2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O ( 1 ) and [Ta6Br12(H2O)6]Br2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O ( 3 )have been solved in the triclinic space group P&1macr; (No. 2). Crystal data: 1 , a = 9.3264(2) Å, b = 9.8272(2) Å, c = 19.0158(4) Å, α = 80.931(1)?, β = 81.772(2)?, γ = 80.691(1)?; 3 , a = 9.3399(2) Å, b = 9.8796(2) Å, c = 19.0494(4) Å; α = 81.037(1)?, β = 81.808(1)?, γ = 80.736(1)?. 1 and 3 consist of two octahedral differently charged cluster entities, [Ta6Br12]2+ in the [Ta6Br12(H2O)6]2+ cation and [Ta6Br12]4+ in trans‐[Ta6Br12(OH)4(H2O)2]. Average bond distances in the [Ta6Br12(H2O)6]2+ cations: 1 , Ta‐Ta, 2.9243 Å; Ta‐Bri , 2.607 Å; Ta‐O, 2.23 Å; 3 , Ta‐Ta, 2.9162 Å; Ta‐Bri , 2.603 Å; Ta‐O, 2.24 Å. Average bond distances in trans‐[Ta6‐Br12(OH)4(H2O)2]: 1 , Ta‐Ta, 3.0133 Å; Ta‐Bri, 2.586 Å; Ta‐O(OH), 2.14 Å; Ta‐O(H2O), 2.258(9) Å; 3 , Ta‐Ta, 3.0113 Å; Ta‐Bri, 2.580 Å; Ta‐O(OH), 2.11 Å; Ta‐O(H2O), 2.23(1) Å. The crystal packing results in short O···O contacts along the c axes. Under the same experimental conditions, [Ta6Cl12]2+ oxidized to [Ta6Cl12]4+ , whereas [Nb6X12]2+ clusters were not affected by the Cu2+ ion.  相似文献   

16.
The quaternary germanides RE3TRh4Ge4 (RE = Ce, Pr, Nd; T = Nb, Ta) were synthesized from the elements by arc‐melting and subsequent annealing in a muffle furnace. The structure of Ce3TaRh4Ge4 was refined from single‐crystal X‐ray diffractometer data: new type, Pbam, a = 719.9(2), b = 1495.0(3), c = 431.61(8), wR2 = 0.0678, 1004 F2 values, and 40 variables. Isotypy of the remaining phases was evident from X‐ray powder patterns. Ce3TaRh4Ge4 is a new superstructure variant of the aristotype AlB2 with an ordering of cerium and tantalum on the aluminum site, whereas the honey‐comb network is built up by a 1:1 ordering of rhodium and germanium. This crystal‐chemical relationship is discussed based on a group‐subgroup scheme. The distinctly different size of tantalum and cerium leads to a pronounced puckering of the [Rh4Ge4] network, which shows the shortest interatomic distances (253–271 pm Rh–Ge) within the Ce3TaRh4Ge4 structure. Another remarkable structural feature concerns the tantalum coordination with six shorter Ta–Rh bonds (265–266 pm) and six longer Ta–Ge bonds (294–295 pm). The [Rh4Ge4] network fully separates the tantalum and cerium atoms (Ce–Ce > 387 pm, Ta–Ta > 431 pm, and Ce–Ta > 359 pm). The electronic density of states DOS from DFT calculations show metallic behavior with large contributions of localized Ce 4f as well as itinerant ones from all constituents at the Fermi level but no significant magnetic polarization on Ce could be identified. The bonding characteristics described based on overlap populations illustrate further the crystal chemistry observations of the different coordination of Ce1 and Ce2 in Ce3TaRh4Ge4. The Rh–Ge interactions within the network are highlighted as dominant. The bonding magnitudes follow the interatomic distances and identify differences of Ta bonding vs. Ce1/Ce2 bonding with the Rh and Ge substructures.  相似文献   

17.
Structure Relationships between Tetraselenium(2+) Hexachlorometalates: Synthesis and Crystal Structure of Se4[ReCl6] and the Solid State Phase Transition of Se4[MCl6](M = Zr, Hf). The reaction of Se, SeCl4, and ReCl4 in a closed, evacuated glass ampoule at 485 K yields dark‐red moisture sensitive crystals of Se4[ReCl6] (orthorhombic, Pccn, a = 1091.5(1), b = 1057.2(1), c = 1015.0(1) pm). The crystal structure consists of almost square‐planar Se42+ cations and slightly distorted octahedral [ReCl6]2— anions. Se4[ReCl6] is paramagnetic with a moment of 3.54 μB/Re according to a d3 configuration and Re(IV). The magnetic moment obeys the Curie‐Weiss law with a Weiss constant of —33 K. The already known compounds Se4[ZrCl6] and Se4[HfCl6] crystallize in a closely related structure with tetragonal symmetry (space group P42/ncm). Both undergo a phase transition in the solid state into an orthorhombic low temperature form, which is isotypic to Se4[ReCl6]. The phase transition was monitored by single crystal and powder diffraction, the transition temperature was determined to 193(1) K for Se4[ZrCl6]. The changes of the lattice constants with temperature imply a displacive transition of mainly second order which is allowed by the translationsgleiche supergroup‐subgroup relation of index 2 between the space groups. No phase transition into a tetragonal high‐temperature form could be observed for the orthorhombic Se4[ReCl6].  相似文献   

18.
The compounds [(n‐Bu)4N]3[MoS4Ag3Cl4] ( 1 ) and [Et4N]3[WOS3Cu3I4] ( 2 ) were synthesized and characterized. Compound 1 crystallizes in the rhombohedral system, space group R3c with a = 17.194(1), b = 17.194(1), c = 39.194(3)Å, Z = 6, V = 10034.7(11)Å3. Compound 2 crystallizes in the rhombohedral system, space group R3c with a = 14.461(2), b = 14.461(2), c = 34.952(2)Å, Z = 6, V = 6329.9(13)Å3. The X‐ray crystallographic structure determinations show that these two cluster compounds consist of a slightly distorted cubic core. Nonlinear optical (NLO) properties of these two clusters were investigated by using Z‐scan techniques with an 8 ns pulsed laser at 532 nm; both clusters exhibit strong nonlinear optical absorption effect (effective α2 = 1.18 × 10—10 m · W—1 for 1 and 1.0 × 10—10 m · W—1 for 2 ).  相似文献   

19.
Rb{Pr6(C)2}I12 was obtained from a mixture of RbI, PrI3, Pr and C as black single crystals at elevated temperatures. The black crystals are triclinic, (no. 2), a = 960.1(2), b = 957.0(2), c = 1003.4(2) pm, α = 71.74(2), β = 70.69(2), γ = 72.38(2)°, V = 805.6(3) 106 pm3, Z = 1; R1 = 0.0868 for all 2749 measured independent reflections. Rb{Pr6(C)2}I12 contains {Pr6(C2)} clusters isolated from each other, surrounded by twelve edge‐bridging and six terminal ligands. The [{Pr6(C)2}Ii12Ia6]? units are connected via i‐a/a‐i bridges according to {Pr6C2}Ii6/1Ii‐a6/2Ia‐i6/2 with rubidium ions occupying twelve‐coordinate interstices.  相似文献   

20.
Reaction of [{Cp(CO)3Mo}2SbCl] with S8 or Se8 leads to the formation of cluster compounds [{Cp(CO)2Mo}2ESbCl] (E = S, Se). [{Cp(CO)2Mo}2SSbCl] crystallizes monoclinic, space group P21/n with a = 812.28(3), b = 855.65(4), c = 2441.01(9) pm and β = 90.149(3)°; [{Cp(CO)2Mo}2SeSbCl] · CH2Cl2 crystallizes triclinic, space group P$\bar{1}$ with a = 828.82(9), b = 1002.8(1), c = 1340.0(2) and α = 109.24(1), β = 100.87(1), γ = 96.81(1)°. For both compounds X‐ray crystal structure analysis reveals tetrahedral Mo2SbE cluster cores with Sb–E bond lengths of 256.8(1) pm (E = S) and 265.3(1) (E = Se). According to the 18 electron rule the [{Cp(CO)2Mo}2ESbCl] clusters can be regarded as complexes of the 4 electron donator ESbCl that is coordinated “side‐on” to a {Cp(CO)2Mo}2 fragment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号