首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A distinct enhancement of upconversion luminescence from core to core/shell (C/S) structure under low flux near infrared (NIR) excitation at 976 nm has been achieved in lanthanide (Er3+, Yb3+)-doped NaYF4 core with undoped NaYF4 shell nanoparticles (NP). A green chemistry approach has been taken to synthesize monodisperse monophasic C/S NP with the core (~20 nm) and shell (~5 nm) crystallizing into cubic phase. Hydrophobic C/S NP have been further made hydrophilic by coating a transparent SHMP layer without affecting luminescence. C/S (NaYF4: Er, Yb/NaYF4) NP integrated dye-sensitized solar cell indicated 11.9% enhancement in overall conversion efficiency under AM 1.5 conditions, due to NIR–visible spectrum modification by fluorescent NPs. The results indicate great potential of such upconverting C/S nanophosphor in solar cell applications.  相似文献   

2.
Aminated-CoFe2O4/SiO2 magnetic nanoparticles (NPs) were prepared from primary silica particles using modified StÖber method. By optimizing the preparation conditions, monodisperse CoFe2O4/SiO2 NPs with high amino groups’ density were obtained, which is necessary for enzyme immobilization. TEM confirm that the sample is a core/shell structure. These aminated-CoFe2O4/SiO2 NPs have narrow size distributions with a mean size of about 60 nm. Moreover, the aminated-CoFe2O4/SiO2 NPs can be easily dispersed in aqueous medium. The experimental results also show that the NPs have superparamagnetism, indicating that the aminated-CoFe2O4/SiO2 NPs can be used as an effective carrier for the enzyme immobilization.  相似文献   

3.
A general facile synthesis approach was used for fabrication of highly emissive aqueous dispersible hexagonal phase upconversion luminescent NaGdF4:Yb/Er nanorods (core NRs) through metal complex decomposition process. An inert NaGdF4 and porous silica layers were grafted surrounding the surface of each and every NRs to enhance their luminescence efficiency and colloidal dispersibility in aqueous environment. Optical properties in terms of band gap energy of core, core/shell, and silica-coated core/shell/SiO2 nanorods were observed to investigate the influence of surface coating, which was gradually decreased after surface coating because of increase crystalline size after growth of inert and silica shells. The inert shell formation before silica surface grafting, upconversion luminescence intensity was greatly improved by about 20 times, owing to the effective surface passivation of the seed core and, therefore, protection of Er3+ ion in the core from the nonradiative decay caused by surface defects. Moreover, after silica coating, core/shell nanorods shows strong upconversion luminescence property similar to the hexagonal upconversion core NRs. It is expected that these NaGdF4:Yb/Er@NaGdF4@SiO2 (core/shell/SiO2) NRs including highly upconversion emissive and aqueous dispersible properties make them an ideal materials for various photonic-based potential applications such as in upconversion luminescent bioimaging, magnetic resonance imaging, and photodynamic therapy.
Graphical abstract ?
  相似文献   

4.
Gold decorated NaYF4:Yb,Er/NaYF4/silica (core/shell/shell) upconversion (UC) nanoparticles (~70–80 nm) were synthesized using tetraethyl orthosilicate and chloroauric acid in a one-step reverse microemulsion method. Gold nanoparticles (~6 nm) were deposited on the surface of silica shell of these core/shell/shell nanoparticles. The total upconversion emission intensity (green, red, and blue) of the core/shell/shell nanoparticles decreased by ~31% after Au was deposited on the surface of silica shell. The upconverted green light was coupled with the surface plasmon of Au leading to rapid heat conversion. These UC/silica/Au nanoparticles were very efficient to destroy BE(2)-C cancer cells and showed strong potential in photothermal therapy.  相似文献   

5.
A new method to produce elaborate nanostructure with magnetic and fluorescent properties in one entity is reported in this article. Magnetite (Fe3O4) coated with fluorescent silica (SiO2) shell was produced through the one-pot reaction, in which one reactor was utilized to realize the synthesis of superparamagnetic core of Fe3O4, the formation of SiO2 coating through the condensation and polymerization of tetraethylorthosilicate (TEOS), and the encapsulation of tetramethyl rhodamine isothiocyanate-dextran (TRITC-dextran) within silica shell. Transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis, and X-ray diffraction (XRD) were carried out to investigate the core–shell structure. The magnetic core of the core–shell nanoparticles is 60 ± 10 nm in diameter. The thickness of the fluorescent SiO2 shell is estimated at 15 ± 5 nm. In addition, the fluorescent signal of the SiO2 shell has been detected by the laser confocal scanning microscopy (LCSM) with emission wavelength (λem) at 566 nm. In addition, the magnetic properties of TRITC-dextran loaded silica-coating iron oxide nanoparticles (Fe3O4@SiO2 NPs) were studied. The hysteresis loop of the core–shell NPs measured at room temperature shows that the saturation magnetization (M s) is not reached even at the field of 70 kOe (7T). Meanwhile, the very low coercivity (H c) and remanent magnetization (M r) are 0.375 kOe and 6.6 emu/g, respectively, at room temperature. It indicates that the core–shell particles have the superparamagnetic properties. The measured blocking temperature (T B) of the TRITC-dextran loaded Fe3O4@SiO2 NPs is about 122.5 K. It is expected that the multifunctional core–shell nanoparticles can be used in bio-imaging.  相似文献   

6.
We have studied the cathodoluminescent properties of Y2SiO5:Ce, Zn2SiO4:Ti, Zn2SiO4:Mn, Y2O3:Eu thin films obtained by high-frequency magnetron sputtering. Based on measurements of the luminescence spectra, we have shown that the films can be used as luminophores with blue emission (Y2SiO5:Ce, Zn2SiO4:Ti), green emission (Zn2SiO4:Mn), and red emission (Y2O3:Eu). We have studied the dependences of the luminescence intensity on the energy of the exciting electrons, the electron beam current density, and the exposure time. We hypothesize that the decrease in the luminescence intensity during electron bombardment is connected with formation of new oxide layers as a result of an electron-stimulated surface chemical reaction.  相似文献   

7.
Magnetic core/shell (CS) nanocomposites (MNCs) are synthesized using a simple method, in which a magnesium ferrite nanoparticle (MgFe2O4) is a core, and an amorphous silicon dioxide (silica SiO2) layer is a shell. The composition, morphology, and structure of synthesized particles are studied using X-ray diffraction, field emission electron microscopy, transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), scattering electrophoretic photometer, thermogravimetric analysis (TGA), and Mössbauer spectroscopy. It is found that the MgFe2O4/SiO2 MNC has the core/shell structure formed by the Fe?O–Si chemical bond. After coating with silica, the MgFe2O4/SiO2 MNC saturation magnetization significantly decreases in comparison with MgFe2O4 particles without a SiO2 shell. Spherical particles agglomerated from MgFe2O4 nanocrystallites ~9.6 and ~11.5 nm in size function as cores coated with SiO2 shells ~30 and ~50 nm thick, respectively. The total size of obtained CS MNCs is ~200 and 300 nm, respectively. Synthesized CS MgFe2O4/SiO2 MNCs are very promising for biomedical applications, due to the biological compatibility of silicon dioxide, its sizes, and the fact that the Curie temperature is in the region required for hyperthermal therapy, 320 K.  相似文献   

8.
La0.45Ce0.45F3:Tb (10 mol% Tb) nanoparticles was synthesized via sonochemical method and then coated with silica (SiO2) shells through a microemulsion process, resulting in the formation of core/shell structured LaCeF3:Tb/SiO2 nanoparticles. The obtained core/shell LaCeF3:Tb/SiO2 nanoparticles are spherical and uniform in size (average size about 60 nm), strongly fluorescent, and long fluorescence lifetime (1.87 ms). This kind of nanoparticles was water-soluble, which could be applied in biological labeling and other fields.  相似文献   

9.
《Current Applied Physics》2015,15(8):915-919
The structural and magnetic properties of non-coated and SiO2-coated iron oxide (Fe3O4) nanoparticles (NPs) were investigated by a polarized small-angle neutron scattering (P-SANS) method. Measurement of the P-SANS allowed us to obtain nuclear and magnetic scattering cross sections of the NPs under applied magnetic field. The analysis of the scattering intensity provided the structural parameters and the spatial magnetization distribution of the non-coated and the SiO2 coated core–shell NPs. The measured radius of both NPs and the shell thickness of the core–shell NPs were in consistent with those measured by the transmission electron microscopy. In comparison, the magnetic core radii of both NPs were 0.12–0.6 nm smaller than the nuclear radii, indicating the magnetization reduction in the surface region of core Fe3O4 in both NPs. However, the reduced magnetization region, which is the surface spin canting region, of the SiO2-coated NPs was relatively narrower than that of the non-coated NPs. We suggest that the SiO2 coating on the Fe3O4 NPs may stabilize the spin order of atoms and prohibit the oxidation or defect formation at the surface region of the Fe3O4 NPs, and enhance the corresponding magnetization of the Fe3O4 NPs by the reduction of the spin canting layer thickness.  相似文献   

10.
The sandwich structure core–shell–shell nanospheres SiO2@(Y,Gd)BO3:Eu3+@SiO2 (SiO2@YGB@SiO2) have been synthesized by depositing YGB nanoparticles on silica core surface through the precipitation method, followed by sol–gel processing of tetraethoxysilane (TEOS) to form smooth silica shell over the surface of YGB. The phosphors were characterized by X-ray diffraction (XRD), scanning electronic microscope (SEM), transmission electronic microscope (TEM) and photoluminescence spectra. The results showed that the phosphors with spherical morphology can be produced easily by assembling the core–shell or core–shell–shell structure, and the XRD patterns indicated that the crystallinity of YGB is weakened due to the core–shell structure, which resulting from the local site symmetry of Eu3+ was decreased. The photoluminescence properties of the product are compared with those of the pure YGB, the core–shell structure SiO2@YGB and YGB@SiO2. The emission intensity, relative luminous efficiency and Red/Orange values of phosphors are increased in the order SiO2@YGB@SiO2>SiO2@YGB>YGB@SiO2>YGB; and the chromaticity coordinates of the phosphors are shifted from orange of pure YGB to red of SiO2@YGB@SiO2.  相似文献   

11.
A simple and reproducible method was developed to synthesize a novel class of Fe3O4/SiO2/dye/SiO2 composite nanoparticles. As promising candidates for use in bioassays, the obtained nanoparticles have an average diameter of 30 nm, and the thickness of the outer shell of silica could be tuned by changing the concentration of the silicon precursor tetraethyl orthosilicate during the synthesis. These multifunctional nanoparticles were found to be highly luminescent, photostable and superparamagnetic. The luminescence intensity of the nanoparticles was increased as the dye concentration was increased in the preparation process. The color of the luminescence was successfully tuned by incorporating different dyes into the nanoparticles. The measurements of the emission spectra indicated that relative to the dye molecules dissolved in ethanol, the emission of the dye-doped nanoparticles exhibited either a red shift or a blue shift, to which a tentative explanation was given.  相似文献   

12.
A method to prepare a core–shell structure consisting of a Pt metal core coated with a silica shell (Pt(in)SiO2) is described herein. A silica shell was grown on poly(vinylpyrrolidone) (PVP)-stabilized Pt nanoparticles 2–3 nm in size through hydrolysis and condensation reactions of tetraethyl orthosilicate (TEOS) in a water/ethanol mixture with ammonia as a catalyst. This process requires precise control of the reaction conditions to avoid the formation of silica particles containing multiple Pt cores and core-free silica. The length of PVP molecules, water content, concentration of ammonia and Pt nanoparticles in solution were found to significantly influence the core–shell structure. By optimizing these parameters, it was possible to prepare core–shell particles each containing a single Pt nanoparticle with a silica layer coating approximately 10 nm thick.  相似文献   

13.
In this study, we developed a facile and benign green synthesis approach for the successful fabrication of well-dispersed urchin-like Au@Pt core–shell nanoparticles (NPs) using gallic acid (GA) as both a reducing and protecting agent. The proposed one-step synthesis exploits the differences in the reduction potentials of AuCl4 and PtCl62−, where the AuCl4 ions are preferentially reduced to Au cores and the PtCl62− ions are then deposited continuously onto the Au core surface as a Pt shell. The as-prepared Au@Pt NPs were characterized by transmission electron microscope (TEM); high-resolution transmission electron microscope (HR-TEM); scanning electron microscope (SEM); UV-vis absorption spectra (UV-vis); X-ray diffraction (XRD); Fourier transmission infrared spectra (FT-IR). We systematically investigated the effects of some experimental parameters on the formation of the Au@Pt NPs, i.e., the reaction temperature, the molar ratios of HAuCl4/H2PtCl6, and the amount of GA. When polyvinylpyrrolidone K-30 (PVP) was used as a protecting agent, the Au@Pt core–shell NPs obtained using this green synthesis method were better dispersed and smaller in size. The as-prepared Au@Pt NPs exhibited better catalytic activity in the reaction where NaBH4 reduced p-nitrophenol to p-aminophenol. However, the results showed that the Au@Pt bimetallic NPs had a lower catalytic activity than the pure Au NPs obtained by the same method, which confirmed the formation of Au@Pt core–shell nanostructures because the active sites on the surfaces of the Au NPs were covered with a Pt shell.  相似文献   

14.
NaYF4:Yb3+, Er3+ nanoparticles were successfully prepared by a polyol process using diethyleneglycol (DEG) as solvent. After being functionalized with SiO2–NH2 layer, these NaYF4:Yb3+, Er3+ nanoparticles can conjugate with activated avidin molecules (activated by the oxidation of the oligosaccharide chain). The as-formed NaYF4:Yb3+, Er3+ nanoparticles, NaYF4:Yb3+, Er3+ nanoparticles functionalized with amino groups, avidin conjugated amino-functionalized NaYF4:Yb3+, Er3+ nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM), Fourier transform infrared (FT-IR), UV/Vis absorption spectra, and up-conversion luminescence spectra, respectively. The biofunctionalization of the NaYF4:Yb3+, Er3+ nanoparticles has less effect on their luminescence properties, i.e., they still show the up-conversion emission (from Er3+, with 4S3/2 → 4I15/2 at ~540 nm and 4F9/2 → 4I15/2 at ~653 nm), indicative of the great potential for these NaYF4:Yb3+, Er3+ nanoparticles to be used as fluorescence probes for biological system.  相似文献   

15.
CaMoO4:Pr(core), CaMoO4:Pr@CaMoO4 (core/shell) and CaMoO4:Pr@CaMoO4@SiO2 (core/shell/shell) nanoparticles were synthesized using polyol method. X-ray diffraction (XRD), thermogravimatric analysis (TGA), UV–vis absorption, optical band gap energy analysis, Fourier transform infrared (FTIR), FT-Raman and photoluminescence (PL) spectroscopy were employed to investigate the structural and optical properties of the synthesized core and core/shell nanoparticles. The results of the XRD indicate that the obtained core, core/shell and core/shell/shell nanoparticles crystallized well at ~150 °C in ethylene glycol (EG) under urea hydrolysis. The growth of the CaMoO4 and SiO2 shell (~12 nm) around the CaMoO4:Pr core nanoparticles resulted in an increase of the average size of the nanopaticles as well as in a broadening of their size distribution. These nanoparticles can be well-dispersed in distilled water to form clear colloidal solutions. The photoluminescence spectra of core, core/shell and core/shell/shell nanoparticles show the characteristic charge transfer emission band of MoO4 2? (533 nm) and Pr3+ 4f2?→?4f2, with multiple strong 3H4?→?3P2, 1D2?→?3H4 and 3P0?→?3?F2 transitions located at ~490, 605 and 652 nm, respectively. The emission intensity of the CaMoO4:Pr@CaMoO4 core/shell and CaMoO4:Pr@CaMoO4@SiO2 core/shell/shell nanoparticles increased ~4.5 and 1.7 times,respectively, with respect to those of CaMoO4:Pr core nanoparticles. This indicates that a significant amount of nonradiative centers existing on the surface of CaMoO4:Pr@CaMoO4 core/shell nanoparticles can be eliminated by the shielding effect of CaMoO4 shells.  相似文献   

16.
This paper reports the synthesis of core shell phosphor particles (Y2Si2O7:Eu/SiO2) produced by flame spray pyrolysis with yttrium and europium nitrates and colloidal silica dispersed precursor solutions. Particles of various structures were produced, including heterogeneous, core shell and non-spherical core shell particles, depending on the synthesis conditions; the ideal core shell structure was obtained under the highest flame temperature and high silicon concentration in the precursor solution. Based on the phase diagram, the formation of the core shell structure was caused by the separation of each component at the liquid phase in the synthesis route. In the energy-dispersive X-ray spectroscopy, yttrium could be detected only at the core part of the particle, while silicon and oxygen could be detected at both the shell and core parts. Under ultraviolet excitation, the ideal core shell particles of Y2Si2O7:Eu showed photoluminescent characteristics. Consequently, it could be concluded that Y2Si2O7:Eu/SiO2 core shell phosphor particles were successfully synthesized by flame spray pyrolysis.  相似文献   

17.
Ultrathin‐thickness single‐junction Si‐based solar cells can be developed to enhance photoelectric conversion efficiency (PECE) approaching to Shockley–Queisser limit. However, loss of short circuit current is a crucial factor that dramatically affects PECE improvement. Even though many studies have focused on rare reflector architecture for facilitating near‐infrared radiation absorption, PECE is still constraint due to its fabrication cost. Herein, an upconversion sustainable micro‐optical trapping device is reported. Using a systematic procedure, a high upconversion performance core–shell‐nanoparticles (CSNPs) structure is synthesized. Accordingly, silica diatom microporous frustule is a good electromagnetic field localization chamber, upon which CSNPs are embedded through a microassemble synthesis. This emerging device can be support on ultrathin‐thickness single‐junction Si‐based solar cells as a rare absorber with its low preparation cost. In the experiment, CSNPs upconversion optical density by surface plasmon resonance of Au nanoparticle's enhancement can be increased five‐time greater than NaYF4 without SiO2 coating. A finite difference time domain simulation and real color luminescence images in this study are also demonstrated.  相似文献   

18.
Regenerable antimicrobial N-halamine/silica hybrid nanoparticles (NPs) containing chlorinated 5,5-dimethylhydantoinyl (Cl-DMH) groups, Cl-DMH/SiO2 hybrid NPs, have been prepared by a co-condensation reaction between N-(3-triethoxysilylpropyl)-5,5-dimethylhydantoin (TS-DMH) and tetraethoxysilane (TEOS) and then a chlorination reaction in NaClO solution. The as-synthesized Cl-DMH/SiO2 NPs were characterized by transmission electron microscopy, Scanning electron microscopy, X-ray photoelectron spectra, Specific surface area, Differential scanning calorimetry, and Fourier transform infrared. Experimental results showed that the size of the as-synthesized Cl-DMH/SiO2 NPs could be well adjusted by changing the mass ratio of TS-DMH/TEOS and the volume ratio of 28 % NH4OH/H2O. Antimicrobial tests showed that the as-prepared Cl-DMH/SiO2 hybrid NPs had excellent antimicrobial activities against both Escherichia coli and Staphylococcus aureus. The minimum inhibitory concentration and minimum bactericidal concentration values of the as-prepared Cl-DMH/SiO2 hybrid NPs are 15 and 20 μg/mL for S. aureus, 25 and 30 μg/mL for E. coli, respectively. Paper disk diffusion assay showed that smaller-sized Cl-DMH/SiO2 hybrid NPs have bigger inhibition zone diameters, indicating stronger antimicrobial efficacies. Also, the storage stability and regenerability of Cl-DMH/SiO2 hybrid NPs were investigated.  相似文献   

19.
ZnO nanoparticles were prepared by a simple chemical synthesis route. Subsequently, SiO2 layers were successfully coated onto the surface of ZnO nanoparticles to modify the photocatalytic activity in acidic or alkaline solutions. The obtained particles were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive spectrometry (EDS) and zeta potential. It was found that ultrafine core/shell structured ZnO/SiO2 nanoparticles were successfully obtained. The photocatalytic performance of ZnO/SiO2 core/shell structured nanoparticles in Rhodamine B aqueous solution at varied pH value were also investigated. Compared with uncoated ZnO nanoparticles, core/shell structured ZnO/SiO2 nanoparticles with thinner SiO2 shell possess improved stability and relatively better photocatalytic activity in acidic or alkaline solutions, which would broaden its potential application in pollutant treatment.  相似文献   

20.
Monodispersed SiO2@YPO4:Tb3+ core–shell submicrospheres were prepared through a simply homogeneous sol–gel method. The resulted SiO2@YPO4:Tb3+ core–shell particles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectra (EDS), transmission electron microscopy (TEM), photoluminescence spectra (PL) and kinetic decays. The XRD results demonstrate that the YPO4:Tb3+ layers begin to crystallize on the SiO2 spheres after annealing at 500 °C and the crystallinity increases with raising the annealing temperature. The FTIR spectra show that the YPO4:Tb3+ shell has linked to the silica surface through forming a Si–O–Y bond. SEM and TEM analysis indicate that SiO2@YPO4:Tb3+ core–shell submicrospheres have the regular microstructures and uniform size distributions. The emission spectra of the obtained submicrospheres are dominated by 5D47F5 transition of Tb3+ (545 nm, green), and the emission intensities of Tb3+ increase with increasing the annealing temperatures and the number of coating cycles. The optimum concentration for Tb3+ was determined to be 5 mol % of Y3+ in YPO4 host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号