首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper we prove asymptotically sharp weighted “first-and-a-half” \(2D\) Korn and Korn-like inequalities with a singular weight occurring from Cartesian to cylindrical change of variables. We prove some Hardy and the so-called “harmonic function gradient separation” inequalities with the same singular weight. Then we apply the obtained \(2D\) inequalities to prove similar inequalities for washers with thickness \(h\) subject to vanishing Dirichlet boundary conditions on the inner and outer thin faces of the washer. A washer can be regarded in two ways: As the limit case of a conical shell when the slope goes to zero, or as a very short hollow cylinder. While the optimal Korn constant in the first Korn inequality for a conical shell with thickness \(h\) and with a positive slope scales like \(h^{1.5}\), e.g., (Grabovsky and Harutyunyan in arXiv:1602.03601, 2016), the optimal Korn constant in the first Korn inequality for a washer scales like \(h^{2}\) and depends only on the outer radius of the washer as we show in the present work. The Korn constant in the first and a half inequality scales like \(h\) and depends only on \(h\). The optimal Korn constant is realized by a Kirchhoff Ansatz. This results can be applied to calculate the critical buckling load of a washer under in plane loads, e.g., (Antman and Stepanov in J. Elast. 124(2):243–278, 2016).  相似文献   

2.
We consider positive classical solutions of
$$\begin{aligned} v_t=(v^{m-1}v_x)_x, \qquad x\in {\mathbb {R}}, \ t>0, \qquad (\star ) \end{aligned}$$
in the super-fast diffusion range \(m<-1\). Our main interest is in smooth positive initial data \(v_0=v(\cdot ,0)\) which decay as \(x\rightarrow +\infty \), but which are possibly unbounded as \(x\rightarrow -\infty \), having in mind monotonically decreasing data as prototypes. It is firstly proved that if \(v_0\) decays sufficiently fast only in one direction by satisfying
$$\begin{aligned} v_0(x) \le cx^{-\beta } \qquad \text{ for } \text{ all } ~x>0 \quad \hbox { with some }\quad \beta >\frac{2}{1-m} \end{aligned}$$
and some \(c>0\), then the so-called proper solution of (\(\star \)) vanishes identically in \({\mathbb {R}}\times (0,\infty )\), and accordingly no positive classical solution exists in any time interval in this case. Complemented by some sufficient criteria for solutions to remain positive either locally or globally in time, this condition for instantaneous extinction is shown to be optimal at least with respect to algebraic decay of the initial data. This partially extends some known nonexistence results for (\(\star \)) (Daskalopoulos and Del Pino in Arch Rat Mech Anal 137(4):363–380, 1997) in that it does not require any knowledge on the behavior of \(v_0(x)\) for \(x<0\). Next focusing on the phenomenon of extinction in finite time, we show that in this respect a mass influx from \(x=-\infty \) can interact with mass loss at \(x=+\infty \) in a nontrivial manner. Namely, we shall detect examples of monotone initial data, with critical decay as \(x\rightarrow +\infty \) and exponential growth as \(x\rightarrow -\infty \), that lead to solutions of (\(\star \)) which become extinct at a finite positive time, but which have empty extinction sets. This is in sharp contrast to known extinction mechanisms which are such that the corresponding extinction sets coincide with all of \({\mathbb {R}}\).
  相似文献   

3.
In this paper we use a KAM theorem of Grébert and Thomann (Commun Math Phys 307:383–427, 2011) to prove the reducibility of the 1d wave equation with Dirichlet boundery conditions on \([0,\pi ]\) with a quasi-periodic in time potential under some symmetry assumptions. From Mathieu–Hill operator’s known results (Eastham in The spectral theory of periodic differential operators, Hafner, New York, 1974; Magnus and Winkler in Hill’s equation, Wiley-Interscience, London, 1969) and Bourgain’s techniques (Commun Math Phys 204:207–247, 1999), we prove that for any \(\epsilon \) small enough, there exist a \(0<m_{\epsilon }\le 1\) and one solution \(u_{\epsilon }(t,x)\) with
$$\begin{aligned} \Vert u_{\epsilon }(t_n,x)\Vert _{H^1({\mathbb {T}})}\rightarrow \infty , \qquad |t_n|\rightarrow \infty , \end{aligned}$$
where \(u_{\epsilon }(t,x)\) satisfies 1d wave equation
$$\begin{aligned} u_{tt}-u_{xx}+m_{\epsilon }u-\epsilon \cos 2t u=0, \end{aligned}$$
with Dirichlet boundery conditions on \([0,\pi ]\).
  相似文献   

4.
We study the Liouville-type theorem for the semilinear parabolic equation \(u_t-\Delta u =|x|^a u^p\) with \(p>1\) and \(a\in {\mathbb R}\). Relying on the recent result of Quittner (Math Ann, doi: 10.1007/s00208-015-1219-7, 2015), we establish the optimal Liouville-type theorem in dimension \(N=2\), in the class of nonnegative bounded solutions. We also provide a partial result in dimension \(N\ge 3\). As applications of Liouville-type theorems, we derive the blow-up rate estimates for the corresponding Cauchy problem.  相似文献   

5.
The first part of this paper is a general approach towards chaotic dynamics for a continuous map \(f:X\supset M\rightarrow X\) which employs the fixed point index and continuation. The second part deals with the differential equation
$$\begin{aligned} x'(t)=-\alpha \,x(t-d_{{\varDelta }}(x_t)). \end{aligned}$$
with state-dependent delay. For a suitable parameter \(\alpha \) close to \(5\pi /2\) we construct a delay functional \(d_{{\varDelta }}\), constant near the origin, so that the previous equation has a homoclinic solution, \(h(t)\rightarrow 0\) as \(t\rightarrow \pm \infty \), with certain regularity properties of the linearization of the semiflow along the flowline \(t\mapsto h_t\). The third part applies the method from the beginning to a return map which describes solution behaviour close to the homoclinic loop, and yields the existence of chaotic motion.
  相似文献   

6.
We consider a reaction–diffusion equation in one space dimension whose initial condition is approximately a sequence of widely separated traveling waves with increasing velocity, each of which is individually asymptotically stable. We show that the sequence of traveling waves is itself asymptotically stable: as \(t\rightarrow \infty \), the solution approaches the concatenated wave pattern, with different shifts of each wave allowed. Essentially the same result was previously proved by Wright (J Dyn Differ Equ 21:315–328, 2009) and Selle (Decomposition and stability of multifronts and multipulses, 2009), who regarded the concatenated wave pattern as a sum of traveling waves. In contrast to their work, we regard the pattern as a sequence of traveling waves restricted to subintervals of \(\mathbb {R}\) and separated at any finite time by small jump discontinuities. Our proof uses spatial dynamics and Laplace transform.  相似文献   

7.
Given \({N \in \mathbb N}\) we prove the existence, for parameter values in a certain range, of N distinct periodic solutions of a state-dependent delay equation studied by Walther (Differ Integral Equ 15:923–944, 2002).  相似文献   

8.
In continuation of Matsumoto’s paper (Nonlinearity 25:1495–1511, 2012) we show that various subspaces are \(C^{\infty }\)-dense in the space of orientation-preserving \(C^{\infty }\)-diffeomorphisms of the circle with rotation number \(\alpha \), where \(\alpha \in {\mathbb {S}}^1\) is any prescribed Liouville number. In particular, for every odometer \({\mathcal {O}}\) of product type we prove the denseness of the subspace of diffeomorphisms which are orbit-equivalent to \({\mathcal {O}}\).  相似文献   

9.
Consider a weakly nonlinear CGL equation on the torus \(\mathbb {T}^d\):
$$\begin{aligned} u_t+i\Delta u=\epsilon [\mu (-1)^{m-1}\Delta ^{m} u+b|u|^{2p}u+ ic|u|^{2q}u]. \end{aligned}$$
(*)
Here \(u=u(t,x)\), \(x\in \mathbb {T}^d\), \(0<\epsilon <<1\), \(\mu \geqslant 0\), \(b,c\in \mathbb {R}\) and \(m,p,q\in \mathbb {N}\). Define \(I(u)=(I_{\mathbf {k}},\mathbf {k}\in \mathbb {Z}^d)\), where \(I_{\mathbf {k}}=v_{\mathbf {k}}\bar{v}_{\mathbf {k}}/2\) and \(v_{\mathbf {k}}\), \(\mathbf {k}\in \mathbb {Z}^d\), are the Fourier coefficients of the function \(u\) we give. Assume that the equation \((*)\) is well posed on time intervals of order \(\epsilon ^{-1}\) and its solutions have there a-priori bounds, independent of the small parameter. Let \(u(t,x)\) solve the equation \((*)\). If \(\epsilon \) is small enough, then for \(t\lesssim {\epsilon ^{-1}}\), the quantity \(I(u(t,x))\) can be well described by solutions of an effective equation:
$$\begin{aligned} u_t=\epsilon [\mu (-1)^{m-1}\Delta ^m u+ F(u)], \end{aligned}$$
where the term \(F(u)\) can be constructed through a kind of resonant averaging of the nonlinearity \(b|u|^{2p}+ ic|u|^{2q}u\).
  相似文献   

10.
Consider the planar Newtonian \((2N+1)\)-body problem, \(N\ge 1,\) with \(2N\) bodies of unit mass and one body of mass \(m\). Using the discrete symmetry due to the equal masses and reducing by the rotational symmetry, we show that solutions with the \(2N\) unit mass points at the vertices of two concentric regular \(N\)-gons and \(m\) at the centre at all times form invariant manifold. We study the regular \(2N\)-gon with central mass \(m\) relative equilibria within the dynamics on the invariant manifold described above. As \(m\) varies, we identify the bifurcations, relate our results to previous work and provide the spectral picture of the linearization at the relative equilibria.  相似文献   

11.
Under conditions similar to those in Shashkov and Shil’nikov (Differ Uravn 30(4):586–595, 732, 1994) we show that a \(C^{k+1}\) Lorenz-type map T has a \(C^{k}\) codimension one foliation which is invariant under the action of T. This allows us to associate T to a \(C^{k}\) one-dimensional transformation.  相似文献   

12.
This paper is concerned with time periodic traveling curved fronts for periodic Lotka–Volterra competition system with diffusion in two dimensional spatial space
$$\begin{aligned} {\left\{ \begin{array}{ll} \dfrac{\partial u_{1}}{\partial t}=\Delta u_{1} +u_{1}(x,y,t)\left( r_{1}(t)-a_{1}(t)u_{1}(x,y,t)-b_{1}(t)u_{2}(x,y,t)\right) ,\\ \dfrac{\partial u_{2}}{\partial t}=d\Delta u_{2} +u_{2}(x,y,t)\left( r_{2}(t)-a_{2}(t)u_{1}(x,y,t)-b_{2}(t)u_{2}(x,y,t)\right) , \end{array}\right. } \end{aligned}$$
where \(\Delta \) denotes \(\frac{\partial ^{2}}{\partial x^{2} }+ \frac{\partial ^{2}}{\partial y^{2} }\), \(x,y\in {\mathbb {R}}\) and \(d>0\) is a constant, the functions \(r_i(t),a_i(t)\) and \(b_i(t)\) are T-periodic and Hölder continuous. Under suitable assumptions that the corresponding kinetic system admits two stable periodic solutions (p(t), 0) and (0, q(t)), the existence, uniqueness and stability of one-dimensional traveling wave solution \(\left( \Phi _{1}(x+ct,t),\Phi _{2}(x+ct,t)\right) \) connecting two periodic solutions (p(t), 0) and (0, q(t)) have been established by Bao and Wang ( J Differ Equ 255:2402–2435, 2013) recently. In this paper we continue to investigate two-dimensional traveling wave solutions of the above system under the same assumptions. First, we establish the asymptotic behaviors of one-dimensional traveling wave solutions of the system at infinity. Using these asymptotic behaviors, we then construct appropriate super- and subsolutions and prove the existence and non-existence of two-dimensional time periodic traveling curved fronts. Finally, we show that the time periodic traveling curved front is asymptotically stable.
  相似文献   

13.
We consider the propagation of elastic waves in gas-filled porous media at small but non-zero values of Knudsen numbers \( {\text{Kn}} \), where \( {\text{Kn}} = \lambda /l \), \( \lambda \) is the mean free path of gas molecules; \( l \) is the characteristic size of inclusion (the so-called slip regime). In this case, it is possible to apply the classic equations of hydrodynamics with modified boundary conditions at solid walls. We have assumed that the gas molecules distribution function is satisfied at the modified Maxwell boundary conditions (Struchtrup 2013; Mohammadzadeh and Struchtrup 2015). We have obtained the expressions for drag and added mass coefficients for the Biot equations of poroelasticity for a system of randomly oriented gas-filled cylindrical capillaries. Our calculations have shown that the drag and added mass coefficients depend considerably on the Knudsen number and the properties of the surface. The influence of the interfacial slip effect on the velocities of the compressional wave of the first kind and shear wave is small, but the velocity and attenuation of the compressional wave of the second kind are considerably influenced by this effect. The results obtained show the fundamental possibility of the determination of the accommodation coefficient by measuring the velocity of the compressional wave of the second kind for different values of the Knudsen number.  相似文献   

14.
Motivated by some recent studies on the Allen–Cahn phase transition model with a periodic nonautonomous term, we prove the existence of complex dynamics for the second order equation
$$\begin{aligned} -\ddot{x} + \left( 1 + \varepsilon ^{-1} A(t)\right) G'(x) = 0, \end{aligned}$$
where A(t) is a nonnegative T-periodic function and \(\varepsilon > 0\) is sufficiently small. More precisely, we find a full symbolic dynamics made by solutions which oscillate between any two different strict local minima \(x_0\) and \(x_1\) of G(x). Such solutions stay close to \(x_0\) or \(x_1\) in some fixed intervals, according to any prescribed coin tossing sequence. For convenience in the exposition we consider (without loss of generality) the case \(x_0 =0\) and \(x_1 = 1\).
  相似文献   

15.
We investigate the influence of a shifting environment on the spreading of an invasive species through a model given by the diffusive logistic equation with a free boundary. When the environment is homogeneous and favourable, this model was first studied in Du and Lin (SIAM J Math Anal 42:377–405, 2010), where a spreading–vanishing dichotomy was established for the long-time dynamics of the species, and when spreading happens, it was shown that the species invades the new territory at some uniquely determined asymptotic speed \(c_0>0\). Here we consider the situation that part of such an environment becomes unfavourable, and the unfavourable range of the environment moves into the favourable part with speed \(c>0\). We prove that when \(c\ge c_0\), the species always dies out in the long-run, but when \(0<c<c_0\), the long-time behavior of the species is determined by a trichotomy described by (a) vanishing, (b) borderline spreading, or (c) spreading. If the initial population is written in the form \(u_0(x)=\sigma \phi (x)\) with \(\phi \) fixed and \(\sigma >0\) a parameter, then there exists \(\sigma _0>0\) such that vanishing happens when \(\sigma \in (0,\sigma _0)\), borderline spreading happens when \(\sigma =\sigma _0\), and spreading happens when \(\sigma >\sigma _0\).  相似文献   

16.
Conditions guaranteeing asymptotic stability for the differential equation
$$\begin{aligned} x''+h(t)x'+\omega ^2x=0 \qquad (x\in \mathbb {R}) \end{aligned}$$
are studied, where the damping coefficient \(h:[0,\infty )\rightarrow [0,\infty )\) is a locally integrable function, and the frequency \(\omega >0\) is constant. Our conditions need neither the requirement \(h(t)\le \overline{h}<\infty \) (\(t\in [0,\infty )\); \(\overline{h}\) is constant) (“small damping”), nor \(0< \underline{h}\le h(t)\) (\(t\in [0,\infty )\); \(\underline{h}\) is constant) (“large damping”); in other words, they can be applied to the general case \(0\le h(t)<\infty \) (\(t\in [0,\infty \))). We establish a condition which combines weak integral positivity with Smith’s growth condition
$$\begin{aligned} \int ^\infty _0 \exp [-H(t)]\int _0^t \exp [H(s)]\,\mathrm{{d}}s\,\mathrm{{d}}t=\infty \qquad \left( H(t):=\int _0^t h(\tau )\,\mathrm{{d}}\tau \right) , \end{aligned}$$
so it is able to control both the small and the large values of the damping coefficient simultaneously.
  相似文献   

17.
We consider bounded solutions of the semilinear heat equation \(u_t=u_{xx}+f(u)\) on \(R\), where \(f\) is of the unbalanced bistable type. We examine the \(\omega \)-limit sets of bounded solutions with respect to the locally uniform convergence. Our goal is to show that even for solutions whose initial data vanish at \(x=\pm \infty \), the \(\omega \)-limit sets may contain functions which are not steady states. Previously, such examples were known for balanced bistable nonlinearities. The novelty of the present result is that it applies to a robust class of nonlinearities. Our proof is based on an analysis of threshold solutions for ordered families of initial data whose limits at infinity are not necessarily zeros of \(f\).  相似文献   

18.
We investigate the dynamics of a nonlinear model for tumor growth within a cellular medium. In this setting the “tumor” is viewed as a multiphase flow consisting of cancerous cells in either proliferating phase or quiescent phase and a collection of cells accounting for the “waste” and/or dead cells in the presence of a nutrient. Here, the tumor is thought of as a growing continuum \(\Omega \) with boundary \(\partial \Omega \) both of which evolve in time. In particular, the evolution of the boundary \(\partial \Omega \) is prescibed by a given velocity \({{{\varvec{V}}}.}\) The key characteristic of the present model is that the total density of cancerous cells is allowed to vary, which is often the case within cellular media. We refer the reader to the articles (Enault in Mathematical study of models of tumor growth, 2010; Li and Lowengrub in J Theor Biol, 343:79–91, 2014) where compressible type tumor growth models are investigated. Global-in-time weak solutions are obtained using an approach based on penalization of the boundary behavior, diffusion, viscosity and pressure in the weak formulation, as well as convergence and compactness arguments in the spirit of Lions (Mathematical topics in fluid dynamics. Compressible models, 1998) [see also Donatelli and Trivisa (J Math Fluid Mech 16: 787–803, 2004), Feireisl (Dynamics of viscous compressible fluids, 2014)].  相似文献   

19.
Dynamical compactness with respect to a family as a new concept of chaoticity of a dynamical system was introduced and discussed in Huang et al. (J Differ Equ 260(9):6800–6827, 2016). In this paper we continue to investigate this notion. In particular, we prove that all dynamical systems are dynamically compact with respect to a Furstenberg family if and only if this family has the finite intersection property. We investigate weak mixing and weak disjointness by using the concept of dynamical compactness. We also explore further difference between transitive compactness and weak mixing. As a byproduct, we show that the \(\omega _{{\mathcal {F}}}\)-limit and the \(\omega \)-limit sets of a point may have quite different topological structure. Moreover, the equivalence between multi-sensitivity, sensitive compactness and transitive sensitivity is established for a minimal system. Finally, these notions are also explored in the context of linear dynamics.  相似文献   

20.
In this paper, we consider FPU lattices with particles of unit mass. The dynamics of the system is described by the infinite system of second order differential equations
$$\begin{aligned} \ddot{q}_n= U^{\prime }(q_{n+1}-q_n)-U^{\prime }(q_n-q_{n-1}),\quad n\in \mathbb {Z}, \end{aligned}$$
where \(q_n\) denotes the displacement of the \(n\)-th lattice site and \(U\) is the potential of interaction between two adjacent particles. We investigate the existence of two kinds travelling wave solutions: periodic and solitary ones under some growth conditions on \(U\) which is different from the widely used Ambrosetti–Rabinowitz condition.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号