首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Based on resonance energy transfer (FRET) from dansyl to rhodamine 101, a new fluorescent probe (compound 1) containing rhodamine 101 and a dansyl unit was synthesized for detecting Hg2+ through ratiometric sensing in DMSO aqueous solutions. This probe shows a fast, reversible and selective response toward Hg2+ in a wide pH range. Hg2+ induced ring-opening reactions of the spirolactam rhodamine moiety of 1, leading to the formation of fluorescent derivatives that can serve as the FRET acceptors. Very large stokes shift (220 nm) was observed in this case. About 97-fold increase in fluorescence intensity ratio was observed upon its binding with Hg2+.  相似文献   

2.
We have rationally constructed a novel ratiometric and near-infrared Cu2+ fluorescent probe based on a tricarbocyanine chromophore. The new probe NIR-Cu showed a ratiometric fluorescent response to Cu2+ with a large emission wavelength shift (up to 142 nm) in the far-red to near-infrared region. The probe also displayed a large variation in the fluorescence ratio (I636/I778) to Cu2+ species with high sensitivity and selectivity. Additionally, the developed probe NIR-Cu was suitable for fluorescence imaging of Cu2+ in living cells and mice.  相似文献   

3.
We have explored the opportunities for enhanced ratiometric pH sensing using the well-known carboxy seminaphthofluorescein (SNAFL-2) and silver island films (SiFs). Our results show that the metallic surfaces can provide up to a 40-fold increase in probe fluorescence intensity as compared to nonmetallic surfaces with the same probe coverage. However, while the S/N is significantly better for pH sensing, the emission wavelength ratiometric values are similar to that obtained in solution, due to the fact that the emission of both the acidic and basic forms of the probe are enhanced to similar extents. To the best of our knowledge this is the first report of enhanced ratiometric fluorescence sensing on metallic surfaces.  相似文献   

4.
Molecular structure, vibrational energy levels and potential energy distribution of 1H‐imidazo[4,5‐b]pyridine, 3H‐imidazo[4,5‐b]pyridine, 5‐methyl‐1H‐imidazo[4,5‐b]pyridine, 6‐methyl‐1H‐imidazo[4,5‐b]pyridine and 7‐methyl‐3H‐imidazo[4,5‐b]pyridine were determined using density functional theory (DFT) at the B3LYP/6‐31G(d,p) level. The optimised bond lengths and bond angles are in good agreement with the X‐ray data of 5‐methyl‐1H‐imidazo[4,5‐b]pyridine obtained in the present work (Pbca space group; a = 8.660(2), b = 11.078(2), c = 11.078(3) Å, Z = 8). The N+H group plays the role of a proton donor in a medium strong hydrogen bond of the type N H…N, linking the N‐atom of the pyridine with the adjacent molecule related by the symmetry operation: 1/2 − x, y − 1/2, z(N…N = 2.869(25) Å). The presence of hydrogen bond is confirmed by appearance in the IR spectra of a very broad and strong contour in the 2000–3100 cm−1 range. The place of substitution of the methyl group at the pyridine ring influences the proton position of the NH group at the imidazole unit. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Xu  Yanhao  Duan  Ruikang  Liu  Hao  Xia  Chengcai  Duan  Guiyun  Ge  Yanqing 《Journal of fluorescence》2021,31(5):1219-1225

A novel pH-responsive probe based on an imidazo[1,2-a]indole fluorophore architecture is reported. The probe was highly selective to strongly acidic pH (pKa = 3.56) with high sensitivity and a fast response time (within 30 s). The probe did not demonstrate any fluorescence changes in the presence of interfering metal ions, and it featured excellent reversibility under strongly acidic conditions. The mechanism of detection of the probe was determined to be based on intramolecular charge transfer (ICT) at different pH. The probe was also able to be used for imaging for detecting acidic pH in Saccharomyces cerevisiae.

  相似文献   

6.
The ability to precisely sense physiological pH changes in the cellular environment is exceedingly difficult. Novel technologies are thus required to address this challenge. Fluorescent nanomaterials can be exploited to this effect because their optical properties can exhibit strong pH dependence. Herein, an intracellular pH-sensing probe is developed via a facile microwave-reaction synthesis method for the preparation of carbon dots (CDs) using glutathione and formamide. The CDs possess unique optical properties allowing for concomitant fluorescence in the blue and red regions of the spectrum. These dots are investigated as pH-sensors using the red fluorescence signatures at 650 and 680 nm. The two fluorescence bands respond differently following pH changes in their environment and could thus be used for ratiometric measurements. Cytotoxicity studies of the CDs in glioblastoma cells show no decrease in cell viability up to 100 μg mL−1 (24 h). Fluorescence imaging reveals that the dots localize in lysosomal compartments. Moreover, they can sense changes in lysosomal pH in response to serum and amino acid starvation, as well as administration of diclofenac and metformin, drugs currently in clinical trials for combination treatments of cancer. These CDs offer a new self-referencing approach for live intracellular pH sensing in 2D- and 3D-cell models.  相似文献   

7.
A superhydrophobic complex coating for cotton fabrics based on silica nanoparticles and perfluorooctylated quaternary ammonium silane coupling agent (PFSC) was reported in this article. The complex thin film was prepared through a sol-gel process using cotton fabrics as a substrate. Silica nanoparticles in the coating made the textile surface much rougher, and perfluorooctylated quaternary ammonium silane coupling agent on the top layer of the surface lowered the surface free energy. Textiles coated with this coating showed excellent water repellent property, and water contact angle (CA) increased from 133° on cotton fabrics treated with pure PFSC without silica sol pretreatment up to 145°. The oil repellency was also improved and the contact angle of CH2I2 droplet on the fabric surface reached to 131°. In contrast, the contact angle of CH2I2 on the fabric surface treated with pure PFSC was only 125°.  相似文献   

8.
In this article, we present our consistent efforts to explore thedynamical pathways of the migration of electronic radiation by usingultrafast (picosecond/femtosecond time scales) Förster resonance energytransfer (FRET) technique. The ultrafast non-radiative energy migration froman intrinsic donor fluorophore (Tryptophan, Trp214) present in domain IIA ofa transporter protein human serum albumin (HSA) to variousnon-covalently/covalently attached organic/inorganic chromophores includingphotoporphyrin IX (PPIX), polyoxovanadate[V15As6O42(H2O)]-6clusters (denoted as V15) and CdS quantum dots (QDs) has beenexplored. We have also used other covalently/non-covalently attachedextrinsic fluorogenic donors (NPA, ANS) in order to exploit the dynamics ofresonance energy migration of an enzyme α-chymotrypsin (CHT). Theuse of extrinsic donor instead of intrinsic Trp in CHT avoids ambiguity inthe location of the donor molecule as seven tryptophans are present in theenzyme CHT. We have labeled CHT with ANS (1-anilinonaphthalene-8-sulfonate)and NPA (4-nitrophenyl anthranilate) and studied FRET. Labeling of DNA hasalso been done in the context that the DNA bases have very low quantum yieldfor fluorescence. We have also validated FRET model over nano-surface energytransfer technique (NSET) in the case of quantum clusters and applied thefindings to other QDs. The use of QDs over organic fluorophore was justifiedby least photo-bleaching of QDs compared to organic fluorophore. Our studiesmay find relevance in the exploration of alternate pathway for ultrafastmigration of electronic radiation through FRET to minimize the detrimentaleffect of UV radiation in living organism.  相似文献   

9.
《光谱学快报》2013,46(6):553-564
Abstract

The cis stereochemistry of 6‐(4‐methoxy‐phenyl)‐1,5,7a‐triphenyl‐tetrahydro‐imidazo[1,5‐b][1,2,4]oxadiazol‐2‐one was studied by use of a PM3 semi‐empirical quantum mechanical model, and x‐ray crystallographic analysis. It crystallizes in the monoclinic space group P2 1 /n with a = 10.812(1) Å, b = 16.464(2) Å, c = 13.379(1) Å, α = 90.00°, β = 98.39(1)°, γ = 90.00°, V = 2356.07(4) Å3, Z = 4, D calc = 1.3067 g cm?3, F(0 0 0) = 976.41, and μ = 0.086 mm?1. The structure was solved by direct methods and refined to R = 0.066 for 1257 independent reflections [I > 4σ (I)]. The results from x‐ray diffraction were seen to be generally consistent with the results from previously reported spectroscopic investigations, beside theoretical calculations, except for conformations of five‐membered fused heterocycles. Two inter‐ and intramolecular weak interactions in addition to carbon atoms (C1 and C3) with different chiralities were found in the structure. The conformational study was performed by randomly scanning the potential energy surface belonging to the title compound with respect to selected torsion angles.  相似文献   

10.
The current advances of fluorescence microscopy and new fluorescent probes make fluorescence resonance energy transfer (FRET) a powerful technique for studying protein-protein interactions inside living cells. It is very hard to quantitatively analyze FRET efficiency using intensity-based FRET imaging microscopy due to the presence of autofluorescence and spectral crosstalks. In this study, we for the first time developed a novel photobleaching-based method to quantitatively detect FRET efficiency (Pb-FRET) by selectively photobleaching acceptor. The Pb-FRET method requires two fluorescence detection channels: a donor channel (CH 1 ) to selectively detect the fluorescence from donor, and a FRET channel (CH 2 ) which normally includes the fluorescence from both acceptor and donor due to emission spectral crosstalk. We used the Pb-FRET method to quantitatively measure the FRET efficiency of SCAT3, a caspase-3 indicator based on FRET, inside single living cells stably expressing SCAT3 during STS-induced apoptosis. At 0, 6 and 12 h after STS treatment, the FRET efficiency of SCAT3 obtained by Pb-FRET inside living cells was verified by two-photon excitation (TPE) fluorescence lifetime imaging microscopy (FLIM). The temporal resolution of Pb-FRET method is in second time-scale for ROI photobleaching, even in microsecond time-scale for spot photobleaching. Our results demonstrate that the Pb-FRET method is independent of photobleaching degree, and is very useful for quantitatively monitoring protein-protein interactions inside single living cell.  相似文献   

11.
Novel imidazo[1,5-a]pyridinyl 1,3,4-Oxadiazole derivatives were synthesized and characterised by IR, 1H NMR and HRMS.UV-vis absorption and fluorescence properties of these compounds in different solutions showed that the maximal emission wavelength was not significantly changed in different solvents; however, maximum absorption wavelength was blue-shifted with the increase of solvent polarity. Absorption λmax and emission λmax was less correlated with substituent groups on benzene rings. The calculated molecular orbital correlates well with their absorption.  相似文献   

12.
设计开发了系列新型咪唑并吡啶类铱(Ⅲ)配合物(BIPy)2Ir(acac)、(PIPy)2Ir(acac)、 (4'-MPIPy)2-Ir(acac)。在化合物Ⅲ中,当R=Ph时得到(BIPy)2Ir(acac)材料,其中BIPy和acac分别表示2-(4-联苯基)咪唑并吡啶和乙酰丙酮。将(BIPy)2Ir(acac)掺杂在N,N'-二咔唑-(1,1'-联苯)-4,4'-二胺(CBP)中制备了高效OLEDs器件,器件的最大电流效率为26.7 cd/A,最大亮度为18 000 cd/cm2,色坐标为(0.32,0.60),是首次报道的新型苯基咪唑并吡啶类铱(Ⅲ)配合物绿色磷光材料。  相似文献   

13.
A new boron-dipyrromethene (BODIPY) fluorescent dye aimed at sensitively detecting hypochlorite anion (ClO?) has been designed, synthesized and characterized. The probe is comprised of a BODIPY fluorophore unit and a ClO? specific reactive group of amidoxime. The addition of hypochlorite results in a red-shift of absorption and emission spectra of the probe accompanied by a decrease of intensity and spectra changes (A500 and 1/I512) of the probe can achieve a good linearity to the concentration of ClO?. The fluorescence probe can react to ClO? rapidly (within 60 s) in a wide pH range (4–10) with high sensitivity (detection limit of 6.81 μM) and selectivity. The reaction mechanism has been proposed and confirmed by MS analysis, ClO? anion oxidizes amidoxime moiety to hydroxyl group and hydroxyl group is further oxidized to formyl group in the formation of a corresponding aldehyde compound. In addition, the probe has also been successfully applied to detect ClO? in tap water and river water samples by spiking a known amount of standard ClO?.  相似文献   

14.
Thin films of blend polymer electrolytes comprising poly(vinyl alcohol) (PVA) and poly(vinyl pyrrolidone) (PVP) complexed with ammonium thiocyanate (NH4SCN) salt in different compositions have been prepared by solution casting technique using distilled water as solvent. The prepared films have been investigated by different experimental techniques. The complexation of these films has been studied by FTIR spectroscopy. The increase in amorphousness of the films with increase in NH4SCN content has been confirmed by XRD analysis. The addition of ammonium thiocyanate salt to PVA-PVP polymer blend shows a shift in Tg of the blend. The effect of salt concentration and temperature on the ionic conductivity of the polymer blend films has been analyzed using AC impedance spectroscopy. The maximum conductivity of 6.85 × 10?4 S cm?1 at room temperature has been observed for the blend with 50 mol% PVA-50 mol% PVP complexed with 40 mol% NH4SCN. The activation energy has been found to be minimum (0.24 eV) for this sample. Wagner’s polarization technique shows that the charge transport in these blend films is predominantly due to ions. Using the highest conductivity blend polymer electrolyte, a proton battery has been fabricated and its discharge characteristics have been studied.  相似文献   

15.
16.
In this paper, a phosphorescent Cu(I) complex of [Cu(POP)(ECI-Phen)]BF4, where POP=bis[2-(diphenylphosphino)phenyl]ether, and ECI-Phen=1-ethyl-2-(N-ethyl-carbazole-yl-4-)imidazo[4,5-f]1,10-phenanthroline, is incorporated into a polystyrene matrix of polystyrene (PS) to form microfibers membranes. The possibility of using the resulted composite microfibrous membranes as an optical oxygen sensor is explored. Good linearity and short response time are obtained with a sensitivity of 9.8. These results suggest that phosphorescent [Cu(POP)(ECI-Phen)]BF4 is a promising candidate for oxygen-sensors and PS is an excellent matrix for oxygen sensing material because it owns a large surface-area-to-volume ratio and can supply a homogeneous matrix for probe molecules. Further analysis suggests that the molecular structure of diamine ligand in Cu(I) complexes is critical for sensitivity due to the characteristic electronic structure of excited state Cu(I) complexes.  相似文献   

17.
A. P. Khandale  S. S. Bhoga  S. K. Gedam 《Ionics》2013,19(11):1619-1626
Polyvinyl alcohol (PVA) complexes with different compositions of ammonium acetate (AA) are prepared by solution cast technique. Polyvinyl alcohol crystallinity decreased with increasing ammonium acetate salt content. Molecular weight and density of polyvinyl alcohol complex increased with the addition of ammonium acetate salt. The ammonium acetate salt addition resulted in plasticization and hence decreased glass transition temperature (T g) as well as hardness number (HV). 80PVA:20AA presented maximum conductivity (σ?=?1.3?×?10?7S cm?1 at 303 K) with minimum activation energy (E a) 0.151 eV below the T g. The proton transport number determined using EMF method found ≈0.98 for polymer complex with ammonium acetate content >15 mol%. The complex impedance is measured as a function of frequency, temperature, relative humidity, and hydrogen partial pressure. Enhanced bulk conductivity with increased H2 partial pressure and relative humidity suggested H+ mobility within complex polymer electrolyte.  相似文献   

18.
We report a detailed computational study, of the organic superconducting charge transfer BEDT-TTF salts, whose electronic properties depend strongly on the packing of the donor radical cations. Electronic structure calculations have been performed at the molecular and periodic level using density functional theory (DFT). These calculations have been used to investigate the magnetic ordering in the BEDT-TTF[FeBr4] salt, where we obtained an antiferromagnetic solution in agreement with experiment. Detailed geometry optimisations have been carried out for both BEDT-TTF[FeBr4] salt and the neutral BEDT-TTF crystal.  相似文献   

19.
A new functionalized ionic liquid (IL) based on cyclic quaternary ammonium cations with ester group and bis(trifluoromethanesulfonyl)imide ([TFSI]?) anion, namely, N-methyl-N-methoxycarbonylpiperidinium bis(trifluoromethanesulfonyl)imide ([MMOCPip][TFSI]), was synthesized and characterized. Physical and electrochemical properties, including Li-ion transference number, ionic conductivity, and electrochemical stability, were investigated. The electrochemical window of [MMOCPip][TFSI] was 6 V, which was wide enough to be used as a common electrolyte material. The Li-ion transference number of this IL electrolyte containing 0.1 M LiTFSI was 0.56. The half-cell tests indicated that the [MMOCPip][TFSI] obviously improved the cyclability of a Li/LiFePO4 cell. For the Li/LiFePO4 half-cells, after 20 cycles at room temperature at 0.1 C, the discharge capacity was 109.7 mAh g?1 with 98.7% capacity retention in the [MMOCPip][TFSI]/0.1 M LiTFSI electrolyte. The good electrochemical performance demonstrated that the [MMOCPip][TFSI] could be used as electrolyte for lithium-ion batteries.  相似文献   

20.
Poly(ethylene glycol)/poly(2-acrylamido-2-methyl-1-propane sulfonic acid) (PEG/PAMPS) with a transparent appearance were prepared in the presence of ammonium persulfate (APS) as an initiator at 70 °C for 24 h. PEG/PAMPS-based polymer gel electrolytes in a motionless and uniform state were obtained by adding the required amount of liquid electrolytes to a dry PEG/PAMPS polymer. Liquid electrolytes include organic solvents with high boiling points (-1-methyl-2-pyrrolidone (NMP) and γ-butyrolactone (GBL)) and a redox couple (alkali metal iodide salt/iodine). The optimized conditions for PEG/PAMPS-based gel electrolytes based on the salt type, the concentration of alkali metal iodide salt/iodine, and solvent volume ratio were determined to be NaI, 0.4 M NaI/0.04 M I2, and NMP:GBL (7:3, v/v), respectively. The highest ionic conductivity and the liquid electrolyte absorbency were 2.58 mS cm?1 and 3.6 g g?1 at 25 °C, respectively. The ion transport mechanism in both the polymer gel electrolytes and liquid electrolytes is investigated extensively, and their best fits with respect to the temperature dependence of the ionic conductivity are determined with the Arrhenius equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号