首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ionic liquid-functionalized alumino-silicate MCM-41 hybrid mesoporous materials have been synthesized with two-step approach, by means of in situ skeleton doping with aluminium and post surface grafting with N-methylimidazole ionic liquid groups. The samples were characterized by X-ray diffraction (XRD), high resolution transmission electron microscope (HRTEM), N2 adsorption-desorption, Fourier transform infrared (FTIR) spectra, 27Al and 13C MAS NMR spectra and temperature-programmed desorption (TPD) of NH3. The results indicated that the bifunctionalized MCM-41 possessed ordered mesostructure. Aluminium was efficiently introduced into the framework of the mesostructure, generating Lewis and Brönsted acid sites. N-methylimidazole ionic liquid groups were covalently grafted onto the surface of mesoporous materials. The as-synthesized bifunctional MCM-41 showed good catalytic performance in the coupling reaction of CO2 and propylene oxide.  相似文献   

2.
In this work, we report the synthesis of nickel titanate nanoparticles loaded on nanomesoporous MCM-41 nanoparticles to determine the effect of MCM-41 nanoparticles on the photocatalytic activities of nickel titanate (NiTiO3) nanoparticles by using simple solid-state dispersion (SSD) method. Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and UV–Vis diffuse reflectance spectra (DRS) analysis were used to characterize the size and morphology of the obtained nanocomposite. The photocatalytic activity (PA) of the as-prepared NiTiO3 loaded on MCM-41 was evaluated by degradation of the methylene blue under irradiation of UV and visible light. The results showed that NiTiO3 loaded on nanosize MCM-41 has higher photocatalytic activity than that of NiTiO3 nanoparticles.  相似文献   

3.
Mesoporous Si-MCM-41 molecular sieve was synthesized hydrothermally and different wt.% of Sb (1.0, 2.0, 3.0, 5.0, 10.0, 15.0 and 20.0) was loaded on it by wet impregnation method. The Sb/MCM-41 materials were characterized by various physico-chemical techniques such as XRD, TGA and TEM. The TEM image showed a honeycomb structure of the host material. They were used as catalytic templates for the growth of MWCNTs by CVD method with different temperatures at 700, 800, 900 and 1000 °C using acetylene as a carbon precursor. The reaction temperature was optimized for the better formation of MWCNTs and they were purified and then characterized by XRD, SEM, HR-TEM and Raman spectroscopy techniques. The formation of MWCNTs with diameter in the range of 4−6 nm was observed from HR-TEM. The good thermal stability and high productivity of catalyst observed in this study revealed that the 2 wt.% Sb loaded MCM-41 could be a promising support for the catalytic synthesis of MWCNTs at 800 °C by CVD method.  相似文献   

4.
Bismuth layer-structured (Bi7−xSrx)(Fe3−xTi3+x)O21 (BSFT) ceramics were synthesized and the ferroelectric properties and crystal structure were investigated. X-ray powder diffraction profiles and refinement of the lattice parameters indicated single phase BSFT was obtained in the composition range 0-1.5. The lattice parameter b of BSFT remained almost constant, while a slight decrease in the lattice parameter a was observed by the Sr and Ti substitution for Bi and Fe, respectively, which indicated an increase in the orthorhombicity. The dependence of the BSFT lattice parameter on temperature implied a phase transition from the orthorhombic to the tetragonal phase, which was in good agreement with the Curie temperature. The remnant polarization Pr, of BSFT was significantly improved by the Sr and Ti substitution for Bi and Fe, and ranged from 9 to 16 μC/cm2, although no remarkable variation in the coercive field Ec was observed. As a result, a well-saturated P-E hysteresis loop of BSFT ceramic was obtained at x=0.5 with a Pr of 30 μC/cm at an applied voltage of 280 kV/cm.  相似文献   

5.
Polycrystalline CuIn1−xGaxTe2 bulk films were synthesized by reacting, in stoichiometric proportions, high purity Cu, In, Ga and Te in a vacuum sealed quartz ampoule. The phase structure and composition of the bulk films were analysed by X-ray diffraction and energy-dispersive X-ray analysis, respectively. The bulk samples, of p-type conductivity, are found to be near-stoichiometric, polycrystalline, with tetragonal chalcopyrite structure, predominantly oriented along a direction perpendicular to the (1 1 2) plane. Photoluminescence spectra were recorded at 7 K and 700 mW to characterize the defects and the structural quality. The main peak as a function of composition has been studied.  相似文献   

6.
Intense red phosphors, AgGd1−xEux(W1−yMoy)2O8 (x=0.0-1.0, y=0.0-1.0), have been synthesized through traditional solid-state reaction and characterized by X-ray diffraction (XRD) and photoluminescence (PL). XRD results reveal that AgGd1−xEuxW2O8 synthesized at 1000 °C has a tetragonal crystal structure, which is named as high temperature phase (HTP) AgGdW2O8. All phosphors compositions with Eu3+ show red and green emission on excitation either in the charge-transfer or Eu3+ levels. Analysis of the emission spectra with different Eu3+ concentrations reveal that the optimum dopant concentration for Eu3+ is x=0.6 in the HTP AgGd1−xEuxW2O8 (x=0.0-1.0). Studies on the AgGd0.4Eu0.6(W1−yMoy)2O8 (y=0.0-1.0) and AgGd1−xEux(W0.7Mo0.3)2O8 (x=0.0-1.0) show that the emission intensity is maximum for compositions with y=0.3 and x=0.5, respectively, and a decrease in emission intensity is observed for higher y or x values. The Mo6+ and Eu3+ co-doped AgGd(WO4)2 phosphors show higher emission intensity in comparison with the singly Eu3+-doped AgGd(WO4)2 in UV region. The intense emission of the tungstate/molybdate phosphors under 394 and 465 nm excitations, respectively, suggests that these materials are promising candidates as red-emitting phosphors for near-UV/blue GaN-based white LED for white light generation.  相似文献   

7.
A series of ZnO1−xSx alloy films (0 ≤ x ≤ 1) were grown on quartz substrates by radio-frequency (rf) magnetron sputtering of ZnS ceramic target, using oxygen and argon as working gas. X-ray diffraction measurement shows that the ZnO1−xSx films have wurtzite structure with (0 0 2) preferential orientation in O-rich side (0 ≤ x ≤ 0.23) and zinc blende structure with (1 1 1) preferential orientation in S-rich side (0.77 ≤ x ≤ 1). However, when the S content is in the range of 0.23 < x < 0.77, the ZnO1−xSx film consists of two phases of wurtzite and zinc blende or amorphous ZnO1−xSx phase. The band gap energy of the films shows non-linear dependence on the S content, with an optical bowing parameter of about 2.9 eV. The photoluminescence (PL) measurement reveals that the PL spectrum of the wurtzite ZnO1−xSx is dominated by visible band and its PL intensity and intensity ratio of UV to visible band decrease greatly compared with undoped ZnO. All as-grown ZnO1−xSx films behave insulating, but show n-type conductivity for w-ZnO1−xSx and maintain insulating properties for β-ZnO1−xSx after annealed. Mechanisms of effects of S on optical and electrical properties of the ZnO1−xSx alloy are discussed in the present work.  相似文献   

8.
The characterization and magnetic properties of YFe12−xMox (x=2.0, 2.5 and 3.0) with the ThMn12-type structure, and the magnetocaloric effect of YFe9.5Mo2.5 were investigated. A directional growth was observed in YFe10Mo2 alloy. A broad peak in the zero-field-cooling (ZFC) magnetization curve of the YFe12−xMox compounds is ascribed to the existence of ferromagnetic clusters with different site moments and scattered orientations of the moments. The broad range of the peak is reduced with increasing Mo content. A weak peak is observed near 190 K in the ZFC curve of YFe9Mo3, which is associated with the 8i sites being mostly occupied by Mo atoms. YFe9.5Mo2.5 has a magnetic entropy change of −1.09 J/kg K for a field change of 5 T at 277 K.  相似文献   

9.
Highly ordered mesoporous material MCM-41 was synthesized from tetraethylorthosilicate (TEOS) as Si source and cetyltrimethylammonium bromide (CTAB) as template. Well-dispersed NiO nanoparticles were introduced into the highly ordered mesoporous MCM-41 by chemical precipitation method to prepare the highly ordered mesoporous NiO/MCM-41 composite. X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM) and high-resolution TEM (HRTEM), and nitrogen adsorption–desorption measurement were used to examine the morphology and the microstructure of the obtained composite. The morphological study clearly revealed that the synthesized NiO/MCM-41 composite has a highly ordered mesoporous structure with a specific surface area of 435.9 m2 g−1. A possible formation mechanism is preliminary proposed for the formation of the nanostructure. The adsorption performance of NiO/MCM-41 composite as an adsorbent was further demonstrated in the removal azo dyes of methyl orange (MO), Congo red (CR), methylene blue (MB) and rhodaming B (RB) under visible light irradiation and dark, respectively. The kinetics and mechanism of removal methylene blue were studied. The results show that NiO/MCM-41 composite has a good removal capacity for organic pollutant MB from the wastewater under the room temperature. Compared with MCM-41 and NiO nanoparticles, 54.2% and 100% higher removal rate were obtained by the NiO/MCM-41 composite.  相似文献   

10.
Bulk InxSe1−x (with x=5-25 at%) glasses were prepared using the melt-quench technique. Short range order(SRO) was examined by the X-ray diffraction using Cu(kα) radiation in the wave vector interval 0.28≤k≤6.5 A0−1.The SRO parameters have been obtained from the radial distribution function. The inter-atomic distance obtained from the first and second peak are r1=0.263 and r2=0.460 nm, which is equivalent In-Se and Se-Se bond length. The fundamental structural unit for the studied glasses is In2Se3 pyramid. Using the differential scanning calorimetry (DSC), the crystallization mechanism of InxSe1−x chalcogenide glass has been studied. The glass transition activation energy (Eg) is 289±0.3 kj/mol.There is a correlation amongst the glass forming ability, bond strength and the number of lone pair electrons. The utility of the Gibbs-Di Marzio relation was achieved by estimating Tg theoretically.  相似文献   

11.
Gd5(SixGe1−x)4, known for its giant magnetocaloric effect, also exhibits a colossal strain of the order of 10,000 ppm for a single crystal near its coupled first-order magnetic-structural phase transition, which occurs near room temperature for the compositions 0.41≤x≤0.575. Such colossal strain can be utilised for both magnetic sensor and actuator applications. In this study, various measurements have been carried out on strain as a function of magnetic field strength and as a function of temperature on single crystal Gd5Si2Ge2 (x=0.5), and polycrystalline Gd5Si1.95Ge2.05 (x=0.487) and Gd5Si2.09Ge1.91 (x=0.52). Additionally a giant magnetostriction/thermally induced strain of the order of 1800 ppm in polycrystalline Gd5Si2.09Ge1.91 was observed at its first order phase transition on varying temperature using a Peltier cell without the use of bulky equipment such as cryostat or superconducting magnet.  相似文献   

12.
We investigated the hardness enhancement in titanium carbonitrides (TiCxN1−x) by the population analysis method based on first-principles calculations. Populations for bonds TiC and TiN in TiCxN1−x (0.25<x<0.75) are all positive. The enhanced hardness for titanium carbonitrides is well explained by overlap population analysis. Intrinsic hardness of TiCxN1−x has been calculated based on the obtained overlap populations. The calculated results are in good agreement with the available experimental data.  相似文献   

13.
The band structure and optical properties of the CdSexTe1−x ternary mixed crystals have been studied using the pseudopotential formalism under an improved virtual crystal approximation approach. Quantities such as, energy gaps, band-gap bowing parameters, electron effective mass and dielectric constants are calculated. Our results agree well with the available data in the literature. The composition dependence of all studied quantities has been expressed by quadratic polynomial forms.  相似文献   

14.
The electrochemical behaviors of BiIII, TeIV and SbIII single ions and their mixtures were investigated in nitric acid and hydrochloric acid system separately. Based on which, BixSb2−xTey thermoelectric films were prepared by potentiostatic electrodeposition from the solutions with different concentrations of BiIII, TeIV and SbIII in the two acid systems. The morphologies, compositions, structures, Seebeck coefficients and resistivities of the deposited thin films were characterized and compared by ESEM (or FESEM), EDS, XRD, Seebeck coefficient measurement system and four-probe resistivity measuring device respectively. The results show that although BixSb2−xTey thermoelectric thin film which structure is consistent with the standard pattern of Bi0.5Sb1.5Te3 can be gained in both of the two acid solutions by adjusting the deposition potential, their morphologies and thermoelectric properties have big differences in different acid solutions.  相似文献   

15.
This work is concerned with the dependence of the electronic energy band structures for GaAs1−xPx alloys on temperature and pressure that is based on local empirical pseudo-potential method. The band structures of GaAs1−xPx alloys were calculated in the virtual crystal approximation using the EPM which incorporates compositional disorder as an effective potential.  相似文献   

16.
Cathodoluminescent (CL) spectra of Li-doped Gd2−xYxO3:Eu3+ solid-solution (0.0?x?0.8) were investigated at low voltages (300 V-1 kV). The CL intensity is maximum for the composition of x=0.2 and gradually reduces with increasing the amount of substituted Y content. In particular, small (∼100 nm) particles of Li-doped Gd1.8Y0.2O3:Eu3+ are obtained by firing the citrate precursors at only 650°C for 18 h. Relative red-emission intensity at 300 V of this phosphor is close to 180% in comparison with that of commercial red phosphor Y2O3:Eu3+. An increase of firing temperature to 900°C results in 400-600 nm sized spherical particles. At low voltages (300-800 V), the CL emission of 100 nm sized particles is much stronger than that of 400-600 nm sized ones. In contrast, the larger particles exhibit the higher CL emission intensity at high voltages (1-10 kV). Taking into consideration small spherical morphology and effective CL emission, Li-doped Gd1.8Y0.2O3:Eu3+ appears to be an efficient phosphor material for low voltage field emission display.  相似文献   

17.
Amorphous silicon nitride (a-SiNx) films were deposited using plasma-enhanced chemical-vapor deposition (PECVD) and subsequently, thermal annealing processes were performed at 700-1000 °C in the ultra-high vacuum (UHV) condition. A strong photoluminescence (PL) peak induced by luminescent defect centers was observed at 710 nm for the as-deposited sample. When the sample was annealed at 700-1000 °C, the PL peak intensity became about 3-12 times stronger with no shift of the PL peak. To investigate the origin of the change in PL peak intensity after the thermal annealing, Si 2p and N 1s core-level spectra were systematically analyzed by high-resolution photoemission spectroscopy (HRPES) using synchrotron radiation. In particular, N 1s spectra were decomposed with three characteristic nitrogen-bonding states. It is revealed that the nitrogen bonding state with N-Si and NSi2 configurations (denoted as N3) contributes mainly to the change in PL peak intensity. We note that luminescent nitrogen related defect centers such as N4+ and N2° are localized in the state N3. Detailed analysis of the experimental results shows that the state N3 is located in the interface bounded by the region of the nano-sized stoichiometric silicon nitride Si3N4 (denoted as N1) and is considerably influenced by the thermal annealing, which is an appropriate process to cause strong photoluminescence of the related samples as mentioned above.  相似文献   

18.
BiFeO3/Zn1−xMnxO (x = 0-0.08) bilayered thin films were deposited on the SrRuO3/Pt/TiO2/SiO2/Si(1 0 0) substrates by radio frequency sputtering. A highly (1 1 0) orientation was induced for BiFeO3/Zn1−xMnxO. BiFeO3/Zn1−xMnxO thin films demonstrate diode-like and resistive hysteresis behavior. A remanent polarization in the range of 2Pr ∼ 121.0-130.6 μC/cm2 was measured for BiFeO3/Zn1−xMnxO. BiFeO3/Zn1−xMnxO (x = 0.04) bilayer exhibits a highest Ms value of 15.2 emu/cm3, owing to the presence of the magnetic Zn0.96Mn0.04O layer with an enhanced Ms value.  相似文献   

19.
Thin films of samples of the glassy SxSe100−x system with 0 ≤ x ≤ 7.28 have been prepared by thermal evaporation technique at room temperature (300 K). X-ray investigations show that the structure of pure selenium (Se) does change seriously by the addition of small amount of sulphur S ≤7.28%. The lattice parameters were determined as a function of sulphur content. Results of differential thermal analysis (DTA) of the glassy compositions of the system SxSe100−x were discussed. The characteristic temperatures (Tg, Tc and Tm) were evaluated. Dark electrical resistivities, ρ, of SxSe100−x thin films with different thicknesses from 100 to 500 nm, were measured in the temperature range from 300 to 423 K. Two distinct linear parts with different activation energies were observed. The variation of electrical resistivity of examined compositions has been discussed as a function of the film thickness, temperature and the sulphur content. The application of Mott model for the phonon assisted hopping of small polarons gave the same two activation energies obtained from the resistivity temperature calculations.  相似文献   

20.
Bi5GexSe95−x (30, 35, 40 and 45 at.%) thin films of thickness 200 nm were prepared on glass substrates by the thermal evaporation technique. The influence of composition and annealing temperature, on the structural and electrical properties of Bi5GexSe95−x films was investigated systematically using X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX). The XRD patterns showed that the as-prepared films were amorphous in nature with few tiny crystalline peaks of relatively low intensity for 30 and 45 at.% and the Bi5Ge40Se55 annealed film was polycrystalline. The chemical composition of the Bi5Ge30Se65 film has been checked using energy dispersive X-ray spectroscopy (EDX). The electrical conductivity was measured in the temperature range 300-430 K for the studied compositions. The effect of composition on the activation energy (ΔE) and the density of localized states at the Fermi level N(EF) were studied, moreover the electrical conductivity was found to increase with increasing the annealing temperature and the activation energy was found to decrease with increasing the annealing temperature. The results were discussed on the basis of amorphous-crystalline transformations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号