首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
E.L. Wilson  G. Thornton 《Surface science》2006,600(12):2555-2561
Reflection absorption infrared spectroscopy (RAIRS) has been used to investigate the adsorption of CO on CeO2−x-supported Pd nanoparticles at room temperature. The results show that when CeO2−x is initially grown on Pt(1 1 1), a small proportion of the surface remains as bare Pt sites. However, when Pd is deposited onto CeO2−x/Pt(1 1 1), most of the Pd grows directly on top of the CeO2−x(1 1 1). RAIR spectra of CO adsorption on 1 ML Pd/CeO2−x/Pt(1 1 1) show a broad CO-Pd band, which is inconsistent with a single crystal Pd surface. However, the 5 ML and 10 ML Pd/CeO2−x/Pt(1 1 1) spectra show vibrational bands consistent with the presence of Pd(1 1 1) and (1 0 0) faces, suggesting the growth of Pd nanostructures with well defined facets.  相似文献   

2.
Abstract

The IR spectra of the linkage isomers [Pd(bipy)(SCN)2] and [Pd(bipy)(NCS)2] have been determined in the C≡N stretching region (2200–2000 cm?1) and below 500 cm?1. The band shifts resulting from deuteration of the 2,2′-bipyridine (bipy) ring and 15NCS-labelling are shown to provide a ready means for distinguishing between the internal ligand modes, the μPd-N(bipy) and μPd-SCN/μPd-NCS vibrations. The assignment technique has been further extended to the complexes [Pt(bipy)(SCN)2] and [Pd(phen)(SCN)2] (phen = 1,10-phenanthroline). Finally, a comparison between the IR spectra of [Pd(bipy)(NCO)2], [Pd(bipy)(NCS)2] and [Pd(bipy)(SCN)2] reveals that the frequencies μM-NCO, μM-NCS and μM-SCN decrease in the sequence NCO > NCS > SCN.  相似文献   

3.
A highly dispersed and ultrafine carbon supported Pd nanoparticles (Pd/C) catalyst is synthesized by a facile homogeneous precipitation-reduction reaction method. Under the appropriate pH conditions, [PdCl4]2− species in PdCl2 solution are slowly transformed into the insoluble palladium oxide hydrate (PdO·H2O) precipitation by heat treatment due to a slow hydrolysis reaction, which results in the generation of carbon supported PdO·H2O nanoparticles (PdO·H2O/C) sample with the high dispersion and small particle size. Consequently, a highly dispersed and ultrafine Pd/C catalyst can be synthesized by PdO·H2O → Pd0 in situ reduction reaction path in the presence of NaBH4. As a result, the resulting Pd/C catalyst possesses a significantly electrocatalytic performance for formic acid electrooxidation, which is attributed to the uniformly sized and highly dispersed nanostructure.  相似文献   

4.
Al-free layered sodium silicate magadiite has been used as the host material for the stabilisation of [Pt(NH3)4]2+ ions via intercalation and/or ion-exchange reactions. The stabilisation of Pt(NH3)4]2+ ions in between the layers of Na-magadiite was confirmed by thermogravimetric analysis (TGA), where increased decomposition temperatures were observed for the intercalated materials. The intercalation behaviour of Na-magadiite was evident from the significant uptake of Pt ions (22.2 wt%). When silica gel was used as the host matrix, negligible uptake of Pt ions (1.3 wt%) was noticed. The X-ray diffraction (XRD) measurements revealed no appreciable change in the basal spacing of the intercalated materials. Nevertheless, the decrease in the intensity of the 001 peak with increasing Pt loadings (from 13.0 to 22.2 wt%) substantiated the intercalation of [Pt(NH3)4]2+ ions within the interlayer spaces of Na-magadiite. The transmission electron microscopy (TEM) studies of the intercalated materials revealed that [Pt(NH3)4]2+ ions were homogeneously intercalated in the magadiite matrix, ranging from 2 to 3 nm. Subsequent calcination of the intercalated materials at 600 °C in air led to the formation of Pt nanoparticles supported on silica. The results of XRD and TEM indicated that Pt nanoparticles were highly dispersed on the silica support and were in the range of 5–12 nm. Moreover, chemical analyses confirmed the high loading of Pt on silica in agreement with the TGA results.  相似文献   

5.
Colloidal nanoparticles of Fe3O4 (4 nm) were synthesized by high-temperature hydrolysis of chelated iron (II) and (III) diethylene glycol alkoxide complexes in a solution of the parent alcohol (H2DEG) without using capping ligands or surfactants: [Fe(DEG)Cl2]2−+2[Fe(DEG)Cl3]2−+2H2O+2OH→Fe3O4+3H2DEG+8Cl The obtained particles were reacted with different small-molecule polydentate ligands, and the resulting adducts were tested for aqueous colloid formation. Both the carboxyl and α-hydroxyl groups of the hydroxyacids are involved in coordination to the nanoparticles’ surface. This coordination provides the major contribution to the stability of the ligand-coated nanoparticles against hydrolysis.  相似文献   

6.
Biosynthesis and characterizations of nanoparticles have become an important branch of nanotechnology. In this paper, green synthesis of gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) using the flower extract of Rosa damascena as a reducing and stabilizing agent, has been discussed. This approach is simple, cost-effective and stable for a long time, reproducible at room temperature and in an eco-friendly manner to obtain a self-assembly of AuNPs and AgNPs. The resulting nanoparticles are characterized using UV–vis, TEM, XRD and FT-IR spectroscopic techniques. A modified glassy carbon electrode using AuNPs (AuNPs/GCE) was investigated by means of cyclic voltammetry in a solution of 0.1 M KCl and 5.0×10−3 M [Fe(CN)6]3−/4−. The results show that electronic transmission rate between the modified electrode and [Fe(CN)6]3−/4− increased.  相似文献   

7.
We have investigated the oxidation behavior of Pd nanoparticles grown epitaxially on MgO(1 0 0) single crystal substrates. We find that the interaction of oxygen with octahedral Pd nanoparticles at 500 K can be subdivided in three stages: above 10−6 mbar O2 pressure, the particles start to flatten; above 10−3 mbar, the particles begin to shrink laterally and to be less truncated at the corners. The formation of epitaxial bulk PdO sets in at oxygen pressures above 0.1 mbar, which is accompanied by a continuous shrinkage of the Pd particles. Our results point to a novel nanoparticle oxidation mechanism: the Pd particles act as dissociation centers for O2 and serve at the same time as source for Pd atoms resulting in epitaxial PdO growth on MgO(1 0 0).  相似文献   

8.
9.
A Pd/WO3/C nanocomposite with 3-aminopropyltrimethoxysilane (APTMS)-functionalized tungsten oxide nanosheets (Pd/WO3/C-APTMS) was synthesized and applied as the efficient anode catalyst for direct formic acid fuel cells (DFAFCs). The mechanism for synthesizing the nanocomposite is as follows: initially, [PdCl4]2? was assembled onto the tungsten oxide nanosheets modified with APTMS. Following this, Pd nanoparticles were reduced via traditional impregnation reduction of [PdCl4]2? with NaBH4. The transmission electron microscope (TEM) images revealed that the Pd nanoparticles were uniformly dispersed on WO3 nanosheets and were approximately 2.7 nm in size. The electrochemical test results showed that enhanced electrocatalytic activity for the formic acid oxidation reaction (FAOR) was obtained on the Pd/WO3/C catalyst compared with Pd/C. The higher electrocatalytic activity might be attributed to the uniform distribution of Pd with smaller particles. Furthermore, it is likely that the improvement in catalytic stability for the Pd/WO3/C catalyst is due to the hydrogen spillover effect of WO3 particles. These results indicate that this novel Pd/WO3/C-APTMS nanocomposite exhibits promising potential for use as an anode electrocatalyst in DFAFCs.  相似文献   

10.
Infrared reflection absorption spectroscopy (IRRAS) was used to investigate carbon monoxide (CO) adsorption on 0.15 nm-thick-0.6 nm-thick Pd-deposited Pt(1 1 1) bimetallic surfaces: Pdx/Pt(1 1 1) (where x is the Pd thickness in nanometers) fabricated using molecular beam epitaxial method at substrate temperatures of 343 K, 473 K, and 673 K. Reflection high-energy electron diffraction (RHEED) measurements for Pd0.15-0.6 nm/Pt(1 1 1) surfaces fabricated at 343 K showed that Pd grows epitaxially on a clean Pt(1 1 1), having an almost identical lattice constant of Pt(1 1 1). The 1.0 L CO exposure to the clean Pt(1 1 1) at room temperature yielded linearly bonded and bridge-bonded CO-Pt bands at 2093 and 1855 cm−1. The CO-Pt band intensities for the CO-exposed Pdx/Pt(1 1 1) surfaces decreased with increasing Pd thickness. For Pd0.3 nm/Pt(1 1 1) deposited at 343 K, the 1933 cm−1 band caused by bridge-bonded CO-Pd enhanced the spectral intensity. The linear-bonded CO-Pt band (2090 cm−1) almost disappeared and the bridge-bonded CO-Pd band dominated the spectra for Pd0.6 nm/Pt(1 1 1). With increasing substrate temperature during the Pd depositions, the relative band intensities of the CO-Pt/CO-Pd increased. For the Pd0.3 nm/Pt(1 1 1) deposited at 673 K, the linear-bonded CO-Pt and bridge-bonded CO-Pd bands are located respectively at 2071 and 1928 cm−1. The temperature-programmed desorption (TPD) spectrum for the 673 K-deposited Pd0.3 nm/Pt(1 1 1) showed that a desorption signal for the adsorbed CO on the Pt sites decreased in intensity and shifted ca. 20 K to a lower temperature than those for the clean Pt(1 1 1). We discuss the CO adsorption behavior on well-defined Pd-deposited Pt(1 1 1) bimetallic surfaces.  相似文献   

11.
Using the lyotropic liquid crystalline templating strategy, the nanostructured platinum film was electrochemically deposited on the α-Al2O3 supported dense palladium membrane. The XRD and TEM results of the Pt film revealed a hexagonal array of cylindrical pores with a uniform pore diameter of ca. 3.8 nm and a pore-to-pore separation of ca. 7.6 nm. The structure parameters of the Pt film were almost the same as those of the hexagonal liquid crystalline template. Based on SEM observations, the Pt film was featureless, smooth, and tightly adherent to the dense Pd membrane. The specific surface area of the Pt film, measured by using cyclic voltammetry, was ca. 13.8 m2 g−1, which was in accord with the theoretical value of 14.5 m2 g−1 for a perfect hexagonal nanostructure with the same structure parameters. By combining the dense Pd membrane for selective permeation to hydrogen with the Pt film of high specific surface area for catalysis, the as-synthesized two-layer film will be a promising catalytic membrane to intensify hydrogen-related reaction processes.  相似文献   

12.
We synthesized TPP[FeIII(Pc)(CN)2]2, PTMAx[FeIII(Pc)(CN)2y(MeCN), and PXX [FeIII(Pc)(CN)2], a new series of charge-transfer salts containing the axially-substituted phthalocyanine (Pc), [FeIII(Pc)(CN)2]. In this molecular unit, the π conduction electron derived from the Pc-ring coexists with the d electron which is a potential source of a local magnetic moment. Therefore various phenomena associated with the interplay between local magnetic moments and conduction electrons are expected. We observed the giant negative magnetoresistance (GNMR) in all the three salts. The GNMR is highly anisotropic for the magnetic-field direction, and reflects the g-tensor anisotropy of the local magnetic moment in the [FeIII(Pc)(CN)2] unit. This indicates that the GNMR in these salts originates from the strong π-d interaction in the [FeIII(Pc)(CN)2] unit.  相似文献   

13.
The adsorption of cisplatin and its complexes, cis-[PtCl(NH3)2]+ and cis-[Pt(NH3)2]2+, on a SiO2(1 1 1) hydrated surface has been studied by the Atom Superposition and Electron Delocalization method. The adiabatic energy curves for the adsorption of the drug and its products on the delivery system were considered. The electronic structure and bonding analysis were also performed. The molecule-surface interactions are formed at expenses of the OH surface bonds. The more important interactions are the Cl-H bond for cis-[PtCl2(NH3)2] and cis-[PtCl(NH3)2]+ adsorptions, and the Pt-O interaction for cis-[Pt(NH3)2]2+ adsorption. The Cl p orbitals and Pt s, p y d orbitals of the molecule and its complexes, and the s H orbital and, the s and p orbitals of the O atoms of the hydrated surface are the main contribution to the surface bonds.  相似文献   

14.
Evidence of chemical reactivity of solid platinum-fullerene [PtnC60] compounds towards carbon monoxide is presented. The interaction was systematically studied by means of infrared spectroscopy, X-ray powder diffraction and thermogravimetric analysis. The interaction of carbon monoxide, even under low pressure, is confirmed by the appearance of infrared absorption bands in the CO stretching region at 2064, 2014 and 1991 cm−1 for the carbonylation products. The exceptions were those products with low Pt:C60 ratios, which also displayed bands at 1870 and 1830 cm−1. The data suggest that the CO coordination depends on the specific morphology of the solids, the original Pt:C60 ratio, and the carbon monoxide nominal pressure. Therefore, these results indicate the formation of [(CO)xPt]m species supported in a fullerene matrix mixed with [PtnmC60] compounds. As there is a competition between carbon monoxide and fullerene molecules for the electronic density at the platinum centers, the nature of the CO interaction with [PtnC60] was found to be destructive, leading to the displacement of the latter. Nevertheless, the platinum-carbonyl species formed presents relatively high stability, as shown by desorption tests.  相似文献   

15.
Triruthenium carbonyl clusters {[Ru3(Br)(CO)11] (denoted as Ru-1), [Ru3(μ2-Br)(CO)10] (denoted as Ru-2), and [Ru3(μ3-NPh)(Br)(CO)9] (denoted as Ru-3)} were synthesized on di(3-aminopropyl)viologen (DAPV)/indium tin oxide (ITO) using a surface reaction in a ruthenium (III) carbonyl [Ru3(CO)12] solution, and were applied to photoelectrochemical cells (PECs) at the molecular level. The formation of DAPV on ITO was realized in the form of self-assembled monolayers. Ru3(CO)12 then easily reacted with the Br of DAPV, and a mixture of Ru-1 and Ru-2 was formed on DAPV/ITO. Furthermore, Ru-3 was successfully anchored on DAPV/ITO by adding nitrosobenzene in order to react with Ru-2 on DAPV/ITO. The photocurrents of (Ru-1 and Ru-2)/DAPV/ITO and Ru-3/DAPV/ITO in PECs at the molecular level were 6.3 nA cm−2 and 8.6 nA cm−2, respectively. The quantum yield of Ru-3/DAPV/ITO was ∼0.8%. Time-resolved photoluminescence spectroscopy and emission spectroscopy were recorded to bring out the photoinduced charge transfer process from ruthenium clusters to DAPV.  相似文献   

16.
Rolf W. Berg 《光谱学快报》2013,46(10):715-729
Abstract

Vibrational spectra of crystalline powders of [Nien2] [HgI3]2 and [Men2] [HgI4] (where en = ethylene-diamine chelated to M = Ni(II), Pd(II) or Pt(II)) have been measured at room and liquid-nitrogen temperatures. The bands observed in the low frequency region 200–10 cm?1 are interpreted in terms of mainly internal vibrations of the anions and external lattice modes. Raman and far infrared spectra are compared in order to make structural deductions. In comparison with present knowledge of the stereochemistry and vibrational spectroscopy of other iodomercurates, the triiodo-mercurate salt seems to contain nearly planar trigonal anions, while the tetraiodomercurates contain discrete tetrahedra. Probable site symmetries of the anions which may explain the spectra are discussed.  相似文献   

17.
CdS nanoparticles were coated on the side wall of multiwalled carbon nanotubes (MWCNTs) by a wet chemical synthesis approach via noncovalent functionalization of MWCNTs with poly(diallyldimethylammonium chloride) (PDDA). The as-prepared material was characterized by X-ray diffraction (XRD), UV–vis absorption, fluorescence and transmission electron microscopy (TEM). The results indicated that CdS nanoparticles were uniformly coated on the surface of MWCNTs. Third-order optical nonlinearity of the as-prepared material was studied with the Z-scan technique with picosecond laser pulses at 532 nm. The Z-scan curve revealed that CdS nanoparticle-modified MWCNTs exhibited negative nonlinear refraction index and positive absorption coefficient. The real part and imaginary part of the third-order nonlinear susceptibility χ(3) were calculated to be −4.9 × 10−12 and 6.8 × 10−13 esu, respectively.  相似文献   

18.
The spin Hamiltonian parameters (g factors, hyperfine structure constants and superhyperfine parameters) for the tetragonal [Rh(CN)4Cl2]4− complex in KCl are theoretically investigated from the perturbation formulas of these parameters for a 4d7 ion in a tetragonally elongated octahedron. This center can be assigned to the substitutional Rh2+ on host K+ site reduced from Rh3+ by capturing one electron during the electron irradiation, associated with the two axial ligands CN replaced by two Cl. The crystal-fields of the two axial Cl are weaker than those of the four planar CN, yielding the tetragonal elongation distortion. This system belongs to the case of low spin (S = 1/2) under strong crystal-fields, different from that of high spin (S = 3/2) under weak and intermediate crystal-fields (e.g., 3d7 ions such as Fe+ and Co2+ in conventional chlorides). The calculated spin Hamiltonian parameters show good agreement with the experimental data. The above [Rh(CN)4Cl2]4− complex due to the different axial and perpendicular ligands is unlike the tetragonally elongated [RhCl6]4− complex due to the Jahn–Teller effect in the similar NaCl:Rh2+ crystals.  相似文献   

19.
The Ru(III)/Os(VIII)/Pd(II)/Pt(IV)‐catalysed kinetics of oxidation of glycyl–glycine (Gly‐Gly) by sodium N‐chloro‐p‐ toluenesulfonamide (chloramine‐T; CAT) in NaOH medium has been investigated at 308 K. The stoichiometry and oxidation products in each case were found to be the same but their kinetic patterns observed are different. Under comparable experimental conditions, the oxidation‐kinetics and mechanistic behaviour of Gly‐Gly with CAT in NaOH medium is different for each catalyst and obeys the underlying rate laws:
  • Rate = k [CAT]t [Gly‐Gly]0 [Ru(III)][OH?]x
  • Rate = k [CAT]t[Gly‐Gly]x [Os(VIII)]y[OH?]z
  • Rate = k [CAT]t[Gly‐Gly]x [Pd(II)][OH?]y
  • Rate = k [CAT]t[Gly‐Gly]0 [Pt(IV)]x[OH?]y
Here, and x, y, z < 1 in all the cases. The anion of CAT, CH3C6H4SO2NCl?, has been postulated as the common reactive oxidising species in all the cases. Under comparable experimental conditions, the relative ability of these catalysts towards oxidation of Gly‐Gly by CAT are in the order: Os(VIII) > Ru(III) > Pt(IV) > Pd(II). This trend may be attributed to the different d‐electronic configuration of the catalysts. Further, the rates of oxidation of all the four catalysed reactions have been compared with uncatalysed reactions, under identical experimental conditions. It was found that the catalysed reaction rates are 7‐ to 24‐fold faster. Based on the observed experimental results, detailed mechanistic interpretation and the related kinetic modelling have been worked out for each catalyst. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
The nature of the conformational transition of the polymers with Ru (II) polypyridyl complexes covalently attached to poly(acrylic acid) (PAA) and poly(metacrylic acid) (PMAA) has been in studied in aqueous solutions at different pH values. The [PAA-Ru4]8+ and [PMAA-Ru4]8+ polymers has been investigated by means of the luminescence properties of the Ru(bpy)32+ moiety by steady-state and time-resolved luminescence spectroscopy. The pH markedly affects the luminescence spectra and quantum yields of both ruthenium-polyacid complexes in aqueous solution. Another feature investigated in this work was a comparative study of their luminescence quenching by acridinic dyes in solution. The analysis of the kq values obtained indicates that the bimolecular quenching by acridinium and 9-aminoacridinium is more effective in the [PAA-Ru4]8+ complex (6.4×109 and 1.4×109 M−1 s−1, respectively) compared to the [PMAA-Ru4]8+ (2.6×109 and 1.0×109 M−1 s−1). Also, a similar behavior was evidenced for the Ru solely adsorbed onto pure PAA (9.0×109 and 3.4×109 M−1 s−1) and PMAA (1.8×109 and 1.7×109 M−1 s−1) in aqueous solution. The effect of enhancement of quenching rate constant in [PAA-Ru4]8+ system could be ascribed to the higher density of Ru per polymer chain. The average number per chain is similar in both systems, but the molecular weight is lower for [PAA-Ru4]8+. Furthermore, the larger hydrophilic environment provided by the PAA exposes the Ru probe to the outer surface of the polymer in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号