首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The electrokinetic potential (ζ-potential) is calculated using the combination of the Poisson-Boltzmann equation and the Surface Complexation Models for energetically heterogeneous surface. This approach gives negative values of ζ for the whole pH region, which is in agreement with the published results of ζ-potential measurements. Moreover, the correct changes of ζ-potential values for different types of montmorillonite are observed. It is shown that electrokinetic properties of the considered systems are not as sensitive to surface heterogeneity as the adsorption isotherms and surface charge densities. As it was shown in our previous paper [P. Zarzycki, F. Thomas, J. Colloid Interface Sci. 302 (2006) 547-559], the presented model predicts parallel titration curves for reasonably small equilibrium constants of exchange processes. Here, we show further development of this model in order to predict ζ-potential.  相似文献   

2.
We measured the pattern of charging by contact electrification, following contact between a polydimethylsiloxane (PDMS) stamp and a glass substrate with gold electrodes. We used scanning Kelvin probe microscopy to map the surface potential at the same regions before and after contact, allowing a point-by-point comparison. After contact, the mean surface potential of the glass shifted by 360 mV and micron-scale heterogeneity appeared with a magnitude of ∼100 mV. The gold electrodes showed charge transfer but no discernible heterogeneity. These results show that contact electrification causes heterogeneity of surface potential even on non-polymer surfaces such as glass under ambient conditions.  相似文献   

3.
In coated conductors, surface roughness of metallic substrates and buffer layers could significantly affect the texture of subsequently deposited buffer layers and the critical current density of superconductor layer. Atomic force microscopy (AFM) is usually utilized to measure surface roughness. However, the roughness values are actually relevant to scan scale. Fractal geometry could be exerted to analyze the scaling performance of surface roughness. In this study, four samples were prepared, which were electro polished Hastelloy C276 substrate, mechanically polished Hastelloy C276 substrate and the amorphous alumina buffer layers deposited on both the substrates by ion beam deposition. The surface roughness, described by root mean squared (RMS) and arithmetic average (Ra) values, was analyzed considering the scan scale of AFM measurements. The surfaces of amorphous alumina layers were found to be fractal in nature because of the scaling performance of roughness, while the surfaces of Hastelloy substrates were not. The flatten modification of AFM images was discussed. And the calculation of surface roughness in smaller parts divided from the whole AFM images was studied, compared with the results of actual AFM measurements of the same scan scales.  相似文献   

4.
Adsorption and electrochemical studies were carried out on three activated carbon samples first oxidized, then heat-treated under vacuum (at 180, 500 and 900 °C). The investigations were performed with aqueous electrolyte (Na2HPO4 and H3PO4) solutions containing selected nonpolar organics (benzene and n-hexane). Adsorption measurements were carried out on solution with a wide range of organics concentration (up to saturation point). Cyclovoltammetric curves of powdered electrodes prepared from the activated carbon samples were recorded for the organics in saturated solutions. The electric double layer capacities of the anodic and cathodic parts were estimated, and the surface anodic and cathodic charge was calculated both in absence and presence of organics in the electrochemical systems. The relative surface charge (in relation to systems without organics) was found to decrease with a reduction in the concentration of surface oxygen-containing groups. Other physicochemical parameters characterizing the degree of surface oxidation (total oxygen concentration, primary water adsorption centres) were also taken into consideration. The correlation between adsorption capacity towards the nonpolar organic compounds (obtained from adsorption isotherms) and change of surface charge was analyzed.  相似文献   

5.
The surface potential of Zn1−xMgxO/ZnO heterostructure grown by radical source molecular beam epitaxy was measured by Kelvin force microscopy (KFM). A clear correlation was observed between the topographic image and the surface potential of Zn0.56Mg0.44O/ZnO heterostructure. The potential area around the surface pits was about 60 mV lower than that of the surrounding region, which suggests the effects of the pits on the electrical properties of the potential layer. In order to guarantee the accuracy of measurement, the probe shape was analyzed by probe characterizer and using Au thin films as a potential standard.  相似文献   

6.
《Current Applied Physics》2020,20(12):1391-1395
Muscovite mica is a widely accepted substrate for scanning probe microscopy (SPM) investigations. However, mica has intrinsic properties that alter samples and obstruct their analysis due to free charges build-up, ionic exchange and water adsorption taking place at the surface. In addition to interfacial phenomena, there is a growing interest in electrostatic charges on insulators as they are crucial in diverse applications. Despite the high demand for studies of this nature, experimental set-ups capable of resolving charge build-up at the micro-scale are still scarce and technically limited. Here, we report the imaging of surface charge dissipation on freshly cleaved mica by Kelvin-probe Force Microscopy (KPFM). A local electrostatic charge micro-domain was generated by friction between an atomic force microscope (AFM) tip and mica, and its decay was tracked by two-dimensional mapping using KPFM. We found time-dependent charge dissipation, which is attributed to the adsorption of water molecules on mica surface.  相似文献   

7.
K. Franke  L.M. Eng 《Surface science》2006,600(21):4896-4908
We report on nanoscale experiments with <100 nm lateral resolution being able to differentiate the effective dielectric polarisation Pz, deposited charge density σ, surface dielectric constant εsurface, its voltage dependence εsurface(U), as well as the built-in electric bias voltage Uint in ferroelectric lead zirconate titanate (PZT) thin films. This is possible by combining piezoresponse force microscopy (PFM) and pull-off force spectroscopy (PFS), both methods based on scanning force microscopy (SFM). The differentiation becomes possible since both Pz and σ contribute additively in PFS, while they are subtractive in PFM, hence allowing the two contributions to be separated. εsurface can be quantified by means of the experimental PFS data and the calculated effective penetration depth of PFM developed in a finite element modelling. Finally, Uint and εsurface(U) are derived by an absolute matching of the Pz values measured by PFM and PFS.Our nanoscale results obtained on PZT thin films reveal values for the above specified quantities that have the same order of magnitude as those obtained from macroscopic measurements reflecting the integral response using large electrode areas. However, we stress that the data reported here reveal physical properties deduced on the nanometer scale. Furthermore, they are recorded during one single experimental investigation, using one single set-up only.  相似文献   

8.
This work is mainly based on the paper “R. Rinkunas, S. Kuskevicius, A contactless method of resistance measurement, Tech. Phys., 59 (2009) 133–137”. This paper contains a proposed contact less method for measuring resistivity of various materials, as well as various ambient parameters related to resistivity, e.g., humidity, intensity of illumination, sample thickness, etc. The mentioned paper describes experimental applications of the proposed method for measuring resistances in the range from 107 Ω to 1013 Ω.In this work, a model of the method proposed previously is presented. On the basis of that model, it has been determined that during charging of an insulating layer of a material (on whose surface the deposited ions are immobile), the charge flux becomes wider as it approaches the surface of the insulator. For example, the diameter of the charge flow region may increase from 0.2 mm (near the needle tip) up to 2 cm near the surface of the insulator. [Those numbers correspond to the distance h = 1 mm between the needle and the substrate, insulating layer thickness 40 μm and needle–substrate voltage of 4000 V. A change of those parameters would cause a change of the size of the spot on the layer surface].It has been determined experimentally that resistance of the air gap between the needle and the substrate is linearly dependent only on h, whereas the electromotive force, which is responsible for the electric current from the needle to the substrate, also depends only on h.The radial coordinate of the points where the gradient of the electric charge density is largest is equal to h/2 (a zero radial coordinate corresponds to the point that is directly below the needle).During transfer of charge carriers from the needle onto the surface of the insulating layer, the largest potential is obtained at the point corresponding to radial coordinate r = 0, but this potential is still smaller than the electromotive force that causes electric current in the circuit (i.e., the difference between the power supply voltage and the voltage on the capacitor formed by the needle and the substrate, when no charge has been deposited yet).The time dependence of charging current and of the potential difference between the needle and the substrate is not monotonic: at first the current increases, then it begins to decrease, and the potential difference at first decreases, then it begins to increase. The initial parts of those dependences can be explained by the “breakdown” of the capacitor formed by the needle and the substrate, and the subsequent time dependence is determined by the increase of the insulating layer potential due to accumulation of charge on it.  相似文献   

9.
Ph. Guaino 《Surface science》2007,601(13):2684-2687
Electrical conduction of tungsten oxide nanorods has been characterized by conductive atomic force microscopy (C-AFM). The conduction measurements were carried out in air using a conductive P+-type diamond-coated tip. This technique allows either the simultaneous measuring of the topography and the special current distribution or the recording of the current voltage distribution in a single point mode. We have proposed an equivalent electrical circuit which allows us to understand the I(V) curves. During C-AFM observations we have observed significant changes in image contrast and hysteresis in the I(V) characteristics which depend on the applied bias voltage. The bias dependence effect is interpreted as being due to a local oxidation-reduction phenomenon induced by the tip in the presence of water.  相似文献   

10.
Roughness of pigment coatings and its influence on gloss   总被引:1,自引:0,他引:1  
A robust method is used for analyzing roughness at a wide range of lateral length scales. The method is based on two-point correlation where both the amplitude and lateral spacing of surface heights are considered when determining the roughness. Atomic force microcopy and confocal optical microscopy images were captured for a set of pigment-coated samples. The effects of sampling interval, image size and filtering on surface roughness were studied. Isotropy and periodicity of roughness were determined by analyzing the angular distribution of the correlation length (T) and the autocorrelation function (ACF). A clear dependence of root mean square (RMS) roughness (σ) on T was established for randomly distributed surfaces. By taking into account the σ-T dependence it was possible to obtain σ for various length scales for each sample and thus attaining the most relevant σ for a certain surface function, which in this study was specular reflection of light (gloss). The roughness analysis showed that a small amount of DPP coating was sufficient to completely cover and change the surface of the substrate, while kaolin coatings gave a different response.  相似文献   

11.
基于非线性泊松-玻尔兹曼方程,推导了混合电解质溶液中考虑介电饱和度的表面电位的解析表达式. 近似解析解和精确数值解计算出的表面电位在很大范围的电荷密度和离子强度条件下均具有很好的一致性. 当表面电荷密度大于0.30 C/m2 时,介电饱和度对表面电位的影响变得尤为重要;当表面电荷密度小于0.30 C/m2时,可忽略介电饱和度的影响,即基于经典泊松-玻尔兹曼方程可获得有效的表面电位解析模型. 因此,0.3 C/m2可作为是否考虑介电饱和度的颗粒临界表面电荷密度值. 在低表面电荷密度时,考虑介质饱和度的表面电位解析模型可自然回归到经典泊松-玻尔兹曼理论的结果,得到的表面电位可以正确地预测一价和二价反离子之间的吸附选择性.  相似文献   

12.
High purity nickel (Ni) and titanium (Ti) targets have been used to form well-defined thin films of nitinol on Ti substrate by pulsed laser deposition (PLD) technique. Their chemical composition, crystalline structure and surface properties have been investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM).We have shown that by varying the deposition parameters such as laser fluence and number of laser pulses, we are able to control the film thickness as well as film's uniformity and roughness.Cytocompatibility tests have been performed through in vitro assays using microorganisms culture cells such as yeasts (Saccharomyces cerevisiae) and bacteria (Escherichia coli), in order to determine the thin film's toxic potential at the in vitro cellular level. Microorganism's adhesion on the nitinol surface was observed and the biofilm formation has been analyzed and quantified.Our results have shown no reactivity detected in cell culture exposed to NiTi films in comparison with the negative controls and a low adherence of the microorganisms on the nitinol surface that is an important factor for biofilm prevention. We can, therefore, conclude that NiTi is a good candidate material to be used for implants and medical devices.  相似文献   

13.
Wenqiang Ma 《光谱学快报》2014,47(10):754-760
The present paper describes the studies on the adsorption behavior and charge transfer from isonicotinic acid to silver nanoparticles with experiment and theory. Compared with UV–Visible adsorption spectrum, the adsorption spectrum of Ih-Ag13 cluster was quite good agreed with that of silver colloidal nanoparticle. So that one Ag13 cluster as a substrate was used to simulate Raman frequencies of the adsorption configuration. Here, it is demonstrated the calculated Raman spectra are in good agreement with experimental results. The analysis of Mulliken charge was obtained by density functional theory, which indicated the charge characteristics of Ag13 nanoparticle. Once isonicotinic acid molecules were adsorbed on sliver clusters, the charges transfer from isonicotinic acid to silver clusters, so that the surface charges of silver clusters are uneven.  相似文献   

14.
A combined atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) study of tungsten oxide model catalysts is presented. The model catalysts were prepared by applying the real preparation method to a ZrO2(1 0 0) single crystal support. AFM imaged several granular structures of scattered dimensions on the surface of ZrO2(1 0 0) in the as prepared samples. After heating, at low loading the tungsten species rearranged into small WOx particles strongly interacting with the substrate. At high tungsten content large WO3 aggregates also formed. XPS analysis confirmed these changes. The estimated surface density of the interacting W-containing species closely matched that of real catalysts.  相似文献   

15.
Electronic structures of silicon-organic interfaces were studied by the scanning Kelvin probe technique. These surfaces were fabricated by covalent bonding of a range of phenylacetylene-based molecules (p-X-C6H4CCH, where X = CF3, OCH3, and H) onto a hydrogen-terminated silicon surface. Organic molecules were bound to the surface under high vacuum conditions by ultraviolet light-induced hydrosilylation. Changes in the electronic structure due to electron-donating ability and dipole moment were analyzed under dark and illuminated conditions. The origin of the silicon band bending was tested to separate the effects of molecular monolayers and unintended dopant passivation. In addition, heterogeneous monolayers were grown by controllably diluting the incoming vapor stream with acetylene during growth. The measured work functions follow a trend linked to dipole moment that can be further tuned by molecular dilution. These results suggest a way to use heterogeneous organic monolayers to tune the electron affinity of silicon and directly alter channel modulation in small semiconductor devices.  相似文献   

16.
We demonstrate a single-step facile approach for the fabrication of citric acid functionalized (citrate-stabilized) Fe3O4 aqueous colloidal magnetic nanoparticles (CA-MNP) of size 8-10 nm using soft chemical route. The surface functionalization of Fe3O4 nanoparticles with citric acid was evident from infrared spectroscopy, thermal and elemental analyses, and zeta-potential measurements. The drug-loading efficiency of CA-MNP was investigated using doxorubicin hydrochloride (DOX) as a model drug to evaluate their potential as a carrier system. The quenching of fluorescence intensity and decrease in surface charge of drug loaded CA-MNP strongly suggest the interaction/attachment of drug molecules with CA-MNP. More specifically, the present investigation discusses a method for entrapping positively charged drugs onto the surface of negatively charged CA-MNP through electrostatic interactions and suggests that bound drug molecules will be released in appreciable amounts in the mild acidic environments of the tumors. Furthermore, the aqueous colloidal stability, optimal magnetization, good specific absorption rate (under external AC magnetic field) and cytocompatibility with cells suggested that CA-MNP is appropriate candidate for biomedical applications.  相似文献   

17.
In this work, we investigated the effect of water-vapor treatment on the surface morphology of SiO2 and Si3N4 insulators before and after Co60 gamma-ray irradiation by using the atomic force microscopy (AFM) operated under non-contact mode. Before irradiation, no apparent surface morphology change was found in SiO2 samples even they were water vapor treated. However, bright spots were found on post-irradiated water-vapor-treated SiO2 sample surfaces but not on those without water-vapor treatment. We attributed the bright spots to the negative charge accumulation in the oxide due to charge balancing between hydroxyl (OH) ions adsorbed on SiO2 surface and electron-hole pairs (ehps) generated during irradiation since they can be annealed out after low temperature annealing process. On the contrary, no bright spots were observed on post-irradiated Si3N4 samples with and without water-vapor treatment. This result confirms that Si3N4 is a better water-resist passivation layer than SiO2 layer.  相似文献   

18.
Colloidal layers play an important role in environmental studies, for example in the movement of radionuclides in nuclear waste management. New characterization techniques are required for studying such complex, porous layers. The purpose of this work is to adapt coherence probe microscopy (CPM), which is typically used for measuring the surface roughness of single surfaces, to the analysis of thick inhomogeneous colloidal layers. Two types of layers, either composed of 80 nm or 400 nm alumina colloidal particles deposited on glass slides by decantation have been studied. One of the problems in performing routine roughness measurements of colloidal layers using CPM is the appearance of apparent pits below the level of the substrate surface. We demonstrate that this is due to partial detection of the buried colloid/substrate interface. Further, we have developed the “Z-scan” technique, which consists of building up an XYZ image stack by scanning the full depth of the sample. Any point in an XY image can then be investigated to study the local buried internal structure, layer thickness, and effective refractive index. Comparison of results with AFM and SEM confirm the structure found with CPM and the new “Z-scan” technique, which opens up new and useful applications.  相似文献   

19.
The charge density distribution of the surface leader has never been measured before. Because the surface leader usually covers a long distance, and the surface potential caused by leader discharge is usually very high, this creates difficulties in measuring the potential distribution of the surface leader. In this paper, with a feedback type electrostatic probe based on a field-nullify technique, a charge density distribution scanning system is developed. A two-layer structure pipe is designed to lower the surface potential after discharge. In this way, the surface potential distribution caused by the residual charge of the leader discharge under the application voltage as high as to 40 kV can be measured. The surface charge density distribution including the leader and streamer is perfectly measured, which is in good agreement with the photograph.  相似文献   

20.
Electroluminescence has been studied in ferroelectric BaTiO3 single crystals. The variation of EL with potential temperature and d.c. biasing suggests the existence of complex surface charge layer on the surface of these crystals. The mode of growth of EL pulses reveals the nature of these layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号