首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, Ni-doped ZnO (Zn1−xNixO, x=0, 0.03, 0.06, 0.11) films were prepared using magnetron sputtering. X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), temperature dependence electrical resistance, Hall and magnetic measurements were utilized in order to study the properties of the Ni-doped ZnO films. XRD and XAS results indicate that all the samples have a ZnO wurtzite structure and Ni atoms incorporated into ZnO host matrix without forming any secondary phase. The Hall and electrical resistance measurements revealed that the resistivity increased by Ni doping, and all the Ni-doped ZnO films exhibited n-type semiconducting behavior. The magnetic measurements showed that for the samples with x=0.06 and 0.11 are room-temperature ferromagnetic having a saturation magnetization of 0.33 and 0.39 μB/Ni, respectively. The bound-magnetic-polaron mediated exchange is proposed to be the possible mechanism for the room-temperature ferromagnetism in this work.  相似文献   

2.
Co-doped ZnO (Zn0.95Co0.05O) rods are fabricated by co-precipitation method at different temperatures and atmospheres. X-ray diffraction, Energy dispersive X-ray spectroscopy and Raman results indicate that the samples were crystalline with wurtzite structure and no metallic Co or other secondary phases were found. Raman results indicate that the Co-doped ZnO powders annealed at different temperatures have different oxygen vacancy concentrations. The oxygen vacancies play an important role in the magnetic origin for diluted magnetic semiconductors. At low oxygen vacancy concentration, room temperature ferromagnetism is presented in Co-doped ZnO rods, and the ferromagnetism increases with the increment of oxygen vacancy concentration. But at very high oxygen vacancy concentration, large paramagnetic or antiferromagnetic effects are observed in Co-doped ZnO rods due to the ferromagnetic-antiferromagnetic competition. In addition, the sample annealed in Ar gas has better magnetic properties than that annealed in air, which indicates that O2 plays an important role. Therefore, the ferromagnetism is affected by the amounts of structural defects, which depend sensitively on atmosphere and annealing temperature.  相似文献   

3.
The transparent thin films of undoped, Mn-doped, and Ni-doped zinc oxide (ZnO) have been deposited on glass substrates via sol-gel technique using zinc acetate dehydrate, nickel chloride, and manganese chloride as precursors. The structural properties and morphologies of the deposited undoped and doped ZnO thin films have been investigated. X-ray diffraction (XRD) spectra, scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) were used to examine the morphology and microstructure of the thin films. Optical properties of the thin films were determined by photoluminescence (PL) and UV/vis spectroscopy. The analyzed results indicate that the obtained films are of good crystal quality and have smooth surfaces, which have a pure hexagonal wurtzite ZnO structure without any Mn or Ni related phases. The band gap energy was estimated by Tauc's method and found to be 3.28, 3.26, and 3.34 eV for ZnO, Ni-doped ZnO, and Mn-doped ZnO thin films at room temperature, respectively. Room temperature photoluminescence is observed for the ZnO, Ni-doped ZnO, and Mn-doped ZnO thin films.  相似文献   

4.
Polycrystalline Zn1−xNixO diluted magnetic semiconductors have been successfully synthesized by an auto-combustion method. X-ray diffraction measurements indicated that the 5 at% Ni-doped ZnO had the pure wurtzite structure. Refinements of cell parameters from powder diffraction data revealed that the cell parameters of Zn0.95Ni0.05O were a little bit larger than ZnO. Transmission electron microscopy observation showed that the as-synthesized powders were of the size ∼60 nm. Magnetic investigations showed that the nanocystalline Zn0.95Ni0.05O possessed room temperature ferromagnetism with the saturation magnetic moment of 0.1 emu/g (0.29 μB/Ni2+).  相似文献   

5.
The properties of ZnO quantum dots (QDs) synthesized by the sol-gel process are reported. The primary focus is on investigating the origin of the visible emission from ZnO QDs by the annealing process. The X-ray diffraction results show that ZnO QDs have hexagonal wurtzite structure and the QD diameter estimated from Debye-Scherrer formula is 8.9 nm, which has a good agreement with the results from transmission electron microscopy images and the theoretical calculation based on the Potential Morphing Method. The room-temperature photoluminescence spectra reveal that the ultraviolet excitation band has a red shift. Meanwhile, the main band of the visible emission shifts to the green luminescence band from the yellow luminescence one with the increase of the annealing temperature. A lot of oxygen atoms enter into Zn vacancies and form oxygen antisites with increasing temperature. That is probably the reason for the change of the visible emission band.  相似文献   

6.
Well-aligned ZnO nanorods and Mn-doped ZnO nanorods are fabricated on Si (1 0 0) substrate according to the contribution of Zn metal catalysts. Scanning electron microscopy and high-resolution transmission electron microscopy images indicate that the influence of Zn catalyst on the properties of ZnO can be excluded and the growth of ZnO nanorods follows a vapor-liquid-solid and self-catalyzed model. Mn-doped ZnO nanorods show a typical room temperature ferromagnetic characteristic with a saturation magnetization (MS) of 0.273μB/Mn. Cathodoluminescence suggests that the ferromagnetism of Mn-doped ZnO nanorods originates from the Mn2+-Mn2+ ferromagnetic coupling mediated by oxygen vacancies. This technique provides exciting prospect for the integration of next generation Si-technology-based ZnO spintronic devices.  相似文献   

7.
Pure ZnO films were prepared by pulsed laser deposition on oxidized Si substrates under different oxygen pressure and substrate temperature. Clear room temperature ferromagnetism has been observed in the ZnO film prepared under high vacuum and room temperature. The observation of anomalous Hall effect confirms the intrinsic nature of the ferromagnetism. The photoluminescence and X-ray photoelectron spectroscopy spectra show the high concentration of oxygen vacancies in the ferromagnetic ZnO film. Our results clearly demonstrate the ferromagnetic contribution of the oxygen vacancies mediated by the spin polarized electrons hopping between discrete states in pure ZnO.  相似文献   

8.
In the current work, zinc oxide (ZnO) nano/microstructures are synthesized using a modified thermal-evaporation process by introducing germanium oxide (GeO2) powder mixed with metallic Zn powder as the raw material. Without the use of any catalyst and oxygen flow in the furnace system, GeO2 is utilized to provide an oxygen source for the growth of ZnO structure. The samples are treated by different temperatures ranging from 500 to 900 °C. Morphology, phase structure, and photoluminescence properties are investigated by scanning electron microscopy (SEM), X-ray diffractometer (XRD) and photoluminescence (PL) spectrometer. The structures and morphologies of the samples were found to vary with growth temperature. The XRD diffraction peaks show that the films grown at temperature from 600 to 800 °C consist of hexagonal wurtzite ZnO structures. Room-temperature PL measurement revealed ZnO spectra representing two bands: near-band-edge emission in the ultraviolet (UV) region and broad deep-level emission centered at about 500 nm. The strong UV emission in the PL spectra indicates that the GeO2 supplies sufficient oxygen for formation of ZnO structures with few oxygen vacancies. The growth mechanism and the roles of GeO2 for formation of ZnO structures are discussed in detail.  相似文献   

9.
We report synthesis of a transparent magnetic semiconductor by incorporating Ni in zinc oxide (ZnO) matrix. ZnO and nickel-doped zinc oxide (ZnO:Ni) thin films (∼60 nm) are prepared by fast atom beam (FAB) sputtering. Both undoped and doped films show the presence of ZnO phase only. The Ni concentration (in at%) as determined by energy dispersive X-ray (EDX) technique is ∼12±2%. Magnetisation measurement using a SQUID magnetometer shows that the Ni-doped films are ferromagnetic, having coercivity (Hc) values 192, 310 and 100 Oe and saturation magnetization (Ms) values of 6.22, 5.32 and 4.73 emu/g at 5, 15 and 300 K, respectively. The Ni-doped film is transparent (>80%) across visible wavelength range. Resistivity of the ZnO:Ni film is ∼2.5×10−3 Ω cm, which is almost two orders of magnitude lower than the resistivity (∼4.5×10−1 Ω cm) of its undoped counterpart. Impurity d-band splitting is considered to be the cause of increase in conductivity. Interaction between free charges generated by doping and localized d spins of Ni is discussed as the reason for ferromagnetism in the ZnO:Ni film.  相似文献   

10.
In this paper, we report investigation of room temperature (RT) ferromagnetism in In2O3 (InO) thin films doped with carbon prepared by the co-sputtering method. InO thin films both undoped and C doped with varied thicknesses in the range of 45 to 80 nm were synthesized on Si substrates with varied C concentrations. The carbon concentration was varied from 1.6 to 9.3 at%. The undoped InO films showed no trace of ferromagnetism. Carbon doped films (InO:C) exhibited ferromagnetism at RT, which was of the orders of 10−5 emu and varied strongly with C concentrations. It is observed that the magnetization reached a maximum value of 5.7 emu/cm3 at 4 at% C. Annealing of the InO:C films in an oxygen environment resulted in a decrease in the magnetization, indicating the crucial role of oxygen vacancies in the films. It is concluded that the oxygen vacancies were important and compete with C substitution for the RT ferromagnetism.  相似文献   

11.
In this work, a nanocone ZnO thin film was prepared by electron beam evaporation on a Si (1 0 0) substrate. The structural properties of the film were investigated by X-ray diffraction (XRD), atomic force microscopy and laser Raman scattering, respectively. The aging effect of the nanocone ZnO thin film was studied by photoluminescence spectra. The structural analyses show that the prepared ZnO thin film has a hexagonal wurtzite structure and is preferentially oriented along the c-axis perpendicular to the substrate surface. The photoluminescence spectra show that with the increase of aging time, the green emission of the nanocone ZnO thin film gradually decreases while the ultraviolet emission somewhat increases. The reason for this phenomenon is likely that the green-emission-related oxygen vacancies in the film are gradually filled up. The Raman scattering analyses also suggest that the intensity of the Raman peak related to oxygen vacancies in the nanocone ZnO thin film declines after the film is aged in air for a year. Therefore, the authors think the green emission is mainly connected with oxygen vacancy defects.  相似文献   

12.
The present study reports the room temperature ferromagnetism in undoped ZnO thin films grown by PVD method. The 500 nm film with small (90 nm) ZnO grains possess isolated magnetic domains with coercivity of 520 Oe. However, long range magnetic ordering with smaller coercivity of 230 Oe is observed for 1000 nm film. The long range ordering is caused by the reduction in domain wall pinning effect due to the presence of bigger (270 nm) ZnO grains. PL measurements show that these grains are semiconducting in nature. Results presented here suggest that oxygen vacancies at the surface may be responsible for the observed ferromagnetism.  相似文献   

13.
Na-doped ZnO nanowires with an average diameter of ∼40 nm have been fabricated by a thermal decomposition route at temperature around 400 °C. Their properties have been investigated using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), UV-visible spectroscopy, Raman spectra, and photoluminescence (PL) spectroscopy. Room temperature photoluminescence (RT-PL) showed that the as-synthesized ZnO samples exhibited strong visible emission with a major peak at 420 nm. Furthermore, intensity of the visible emission increased and then decreased with increase in Na concentration. The improvement of visible emission at 420 nm in the Na-doped ZnO samples should be a result of the surface defects increased by doping of Na in zinc oxide. In addition, photocatalytic studies indicated that these nanomaterials showed good photocatalytic performance for organic pollutants in water.  相似文献   

14.
Zn1−xNixO (x = 0.02, 0.03, 0.04, 0.05, 0.07) films were prepared using magnetron sputtering. X-ray diffraction indicates that all samples have a wurtzite structure with c-axis orientation. X-ray photoelectron spectroscopy results reveal that the Ni ion is in a +2 charge state in these films. Magnetization measurements indicate that all samples have room temperature ferromagnetism. In order to elucidate the origin of the ferromagnetism, Zn0.97Ni0.03O films were grown under different atmospheric ratios of argon to oxygen. The results show that as the fraction of oxygen in the atmosphere decreases, both the saturation magnetization and the number of oxygen vacancies increase, confirming that the ferromagnetism is correlated with the oxygen vacancy level.  相似文献   

15.
Effect of temperature on pulsed laser deposition of ZnO films   总被引:1,自引:0,他引:1  
M. Liu 《Applied Surface Science》2006,252(12):4321-4326
ZnO thin films have been deposited on Si(1 1 1) substrates at different substrate temperature by pulsed laser deposition (PLD) of ZnO target in oxygen atmosphere. An Nd:YAG pulsed laser with a wavelength of 1064 nm was used as laser source. The influences of the deposition temperature on the thickness, crystallinity, surface morphology and optical properties of ZnO films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), selected area electron diffraction (SAED), photoluminescence (PL) spectrum and infrared spectrum. The results show that in our experimental conditions, the ZnO thin films deposited at 400 °C have the best surface morphology and crystalline quality. And the PL spectrum with the strongest ultraviolet (UV) peak and blue peak is observed in this condition.  相似文献   

16.
The Co-doped ZnO powders were synthesized by sol-gel method, and treated at different temperatures (673-873 K) in the presence or absence of NH3 atmosphere for 0.5 and 2 h, respectively. X-ray diffraction (XRD) and vibrating sample magnetometer (VSM) show that better crystal structure can cause larger ferromagnetism and the second phase (Co3O4) is the reason for saturation magnetization decrease of the sample sintered at higher temperature in air. XPS and nuclear magnetic resonance (NMR) prove the existence of Co2+ ions in the Zn0.9Co0.1O and the absence of Co clusters, indicating intrinsic ferromagnetism of the samples treated in air. However, strong ferromagnetism of the samples annealed in NH3 is ascribed to cobalt nitride formed during annealing.  相似文献   

17.
High purity Fe2O3/ZnO nanocomposites were annealed in air at different temperatures between 100 and 1200 °C to get Fe-doped ZnO nanocrystals. The structure and grain size of the Fe2O3/ZnO nanocomposites were investigated by X-ray diffraction 2θ scans. Annealing induces an increase of the grain size from 25 to 195 nm and appearance of franklinite phase of ZnFe2O4. Positron annihilation measurements reveal large number of vacancy defects in the interface region of the Fe2O3/ZnO nanocomposites, and they are gradually recovered with increasing annealing temperature. After annealing at temperatures higher than 1000 °C, the number of vacancies decreases to the lower detection limit of positrons. Room temperature ferromagnetism can be observed in Fe-doped ZnO nanocrystals using physical properties measurement system. The ferromagnetism remains after annealing up to 1000 °C, suggesting that it is not related with the interfacial defects.  相似文献   

18.
Self-assembled Ni-doped zinc oxide (Zn1−xNixO, x = 0.05, 0.10, 0.15, i.e., ZnNiO, nominal composition) nanorod arrays vertically grown on the ZnO seed layer covered glass along [0 0 1] direction were synthesized by hydrothermal method. Their images and structures have been characterized by scan electron microscope (SEM), X-ray diffraction (XRD) and Raman spectra, showing that Ni doping is beneficial to the formation of ZnO nanorods with hexagonal cross section and the enhancement of ZnO crystal quality. X-ray photoemission spectroscopy (XPS) study further demonstrated that Ni atoms were successfully doped into ZnO lattices. The photoluminescence (PL) spectra of ZnNiO samples show near bandedge emission (NBE) peaks at about 380 nm at a low excitation power and the NBE peak position redshifts while its intensity continuously increases with the increase of Ni doping concentration. With the excitation power increasing, the NBE peak redshifts from 380 nm to about 400 nm for ZnNiO nanorod arrays. The NBE mechanisms for ZnNiO nanorod arrays have been discussed, which is helpful for understanding their room temperature ferromagnetisms.  相似文献   

19.
In this paper, we report the observation of intrinsic room temperature ferromagnetism in pure La2O3 nanoparticles. Magnetism measurement indicates that all of the samples exhibit room temperature ferromagnetism and the saturation magnetization for the samples decreases with the increase in annealing temperature from 700 to 1,000 °C. X-ray photoelectron spectroscopy identifies the presence of oxygen vacancies in the La2O3 nanoparticles. The fitting results of the O 1s spectrum indicate that the variation of the oxygen vacancy concentration is in complete agreement with the change of the saturation magnetization. It is also found that the saturation magnetization of the La2O3 nanoparticles can be tuned by post-annealing in argon or oxygen atmosphere. These results suggest that the oxygen vacancies are largely responsible for the room temperature ferromagnetism in pure La2O3 nanoparticles.  相似文献   

20.
The ZCO (Co-doped ZnO) films were prepared by using submolecule-doping technique, where the magnetic sputtering of Co and ZnO were alternatively performed onto silicon substrates. The prepared ZCO films were then annealed at different temperatures, and the dependence of the ferromagnetism on annealing temperature was studied. It is found that the saturation magnetization of our samples decreases with the increase of annealing temperature. This behavior is possibly due to the decrease of oxygen vacancies with the increase of the annealing temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号