首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrogenated-carbon nitride (CNx:H) films were synthesized on silicon substrate in a large quantity by the pyrolysis of ethylenediamine in a temperature range of 700-950 °C. The influence of temperature on the morphology, structure, adhesion to substrate, and friction and wear behavior of CNx:H films was investigated. It has been found that CNx:H films obtained at 700 °C and 800 °C are amorphous, and those prepared at 900 °C and 950 °C consist of carbon nitride nanocrystal. Besides, CNx:H film sample obtained at 700 °C has the maximum N content of 9.1 at.% but the poorest adhesion to Si substrate, while the one prepared at 900 °C has the lower N content and the highest adhesion to substrate. As a result, nanocrystalline CNx:H (nc-CNx:H) film synthesized at 900 °C possesses the best wear resistance when slides against stainless steel counterpart. N atom is incorporated into the graphitic network in three different bonding forms, and their relative content is closely related to temperature, corresponding to different adhesion as well as friction and wear behavior of the films obtained at different temperatures. Furthermore, the friction coefficient and antiwear life of as-deposited CNx:H films vary with varying deposition temperature and thickness, and the film with thickness of 1.3 μm, obtained at 900 °C, has the longest antiwear life of over 180,000 s.  相似文献   

2.
Although metallic biomaterials are widely used, systematic studies of protein adsorption onto such materials are generally lacking. Combinatorial binary libraries of Al1−xNbx, Al1−xTax, Al1−xTix, Nb1−xTax, Nb1−xTix, and Ta1−xTix (0 ? x ? 1) and a ternary library of Al1−xTixTay (0 ? x ? 1 and 0 ? y ? 0.7), along with their corresponding pure element films were sputtered onto glass substrates using a unique magnetron sputtering technique. Films were characterized with wavelength-dispersive spectroscopy (WDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Fibrinogen and albumin adsorption amounts were measured by wavelength-dispersive spectroscopy (WDS) and spectroscopic ellipsometry (SE) equipment, both high throughput techniques with automated motion stage capabilities. Protein adsorption onto these films was found to be closely correlated to the alumina surface fraction, with high alumina content at the surface leading to low amounts of adsorbed fibrinogen and albumin. Protein adsorption amounts obtained with WDS and SE were in good agreement for all films.  相似文献   

3.
Co-doped TiO2 (CoxTi1−xO2, 0.05?x?0.2) films have been prepared on Si (0 0 1) substrates by sol–gel method. When heat treated in air, CoxTi1−xO2 films are non-ferromagnetic at room temperature. However, after further annealed in a flowing hydrogen atmosphere, CoxTi1−xO2 films show room-temperature ferromagnetism (RTFM). Measurements of magnetization (M) vs. temperature (T), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) fail to detect Co clusters in the hydrogenated Co0.1Ti0.9O2 films, suggesting that RTFM in the hydrogenated Co0.1Ti0.9O2 films may be intrinsic. But, metal Co appears in the hydrogenated Co0.2Ti0.8O2 films, showing that RTFM in the hydrogenated Co0.2Ti0.8O2 films is as least partly due to metal Co. These results indicate that hydrogen annealing can produce room-temperature ferromagnetism in CoxTi1−xO2 films, but it should be carefully designed to avoid the formation of metal Co in the hydrogenated CoxTi1−xO2 films.  相似文献   

4.
Chromium aluminum nitride (Cr1−xAlxN) coatings were deposited onto AISI H13 steel and silicon substrates by r.f. reactive magnetron co-sputtering in (Ar/N2) gas mixture from chromium and aluminum targets. Properties of deposited Cr1−xAlxN coatings such as compositional, structural, morphological, electrochemical, mechanical and tribological, were investigated as functions of aluminum content. X-ray diffraction patterns of Cr1−xAlxN coatings with different atomic concentrations of aluminum (0.51 < x < 0.69) showed the presence and evolution of (1 1 1), (2 0 0), and (1 0 2) crystallographic orientations associated to the Cr1−xAlxN cubic and w-AlN phases, respectively. The rate of corrosion of the steel coated with Cr1−xAlxN varied with the applied power; however, always being clearly lower when compared to the uncoated substrate. The behavior of the protective effect of the Cr1−xAlxN coatings is based on the substitution of Cr for Al, when the power applied to the aluminum target increases. The mechanical properties were also sensitive to the power applied, leading to a maximum in hardness and a reduced elastic modulus of 30 and 303 GPa at 350 W and a monotonic decrease to 11 and 212 GPa at 450 W, respectively. Finally, the friction coefficient measured by pin-on disk revealed values between 0.45 and 0.70 in humid atmosphere.  相似文献   

5.
Ba0.7−xSr0.3MnxTiO3 (x = 0, 0.025, 0.05) thin films have been prepared on copper foils using sol-gel method. The films were processed in an atmosphere with low oxygen pressure so that the substrate oxidation is avoided and the formation of the perovskite phase is allowed. XRD and SEM results showed that Mn doping enhanced the crystallization of the perovskite phase in the films. The Mn substitution prevents the reduction of Ti4+ to Ti3+, which is supported by XPS analysis. The Ba0.7−xSr0.3MnxTiO3 film with x = 0.025 (BSMT25) exhibits preferred dielectric behavior and a lower leakage current density among the three thin films. The dielectric constant and loss of the BSMT25 film are 1213.5 and 0.065 at 1 MHz and around zero field, which are mostly desired for embedded capacitor applications. The mechanism of Mn doping on improving the electrical properties of barium strontium titanate (BST) thin films was investigated.  相似文献   

6.
NbNx films were deposited on Nb substrate using pulsed laser deposition. The effects of substrate deposition temperature, from room temperature to 950 °C, on the preferred orientation, phase, and surface properties of NbNx films were studied by X-ray diffraction, atomic force microscopy, and electron probe micro analyzer. We find that the substrate temperature is a critical factor in determining the phase of the NbNx films. For a substrate temperature up to 450 °C the film showed poor crystalline quality. With temperature increase the film became textured and for a substrate temperature of 650−850 °C, mix of cubic δ-NbN and hexagonal phases (β-Nb2N + δ′-NbN) were formed. Films with a mainly β-Nb2N hexagonal phase were obtained at deposition temperature above 850 °C. The c/a ratio of β-Nb2N hexagonal shows an increase with increased nitrogen content. The surface roughness of the NbNx films increased as the temperature was raised from 450 to 850 °C.  相似文献   

7.
CrNx films were deposited on stainless steel and Si (1 1 1) substrates via medium frequency magnetron sputtering in a N2 + Ar mixed atmosphere. The influence of N2 content on the deposition rate, composition, microstructure, mechanical and tribological properties of the as-deposited films was investigated by means of the X-ray photoelectron spectrometry (XPS), X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), nanoindentation and tribometer testing. It was found that the N atomic concentration increased and the phase transformed from a mixture of Cr2N + Cr(N) to single-phase Cr2N, and then Cr2N + CrN to pure CrN phase with the increase of N2 content. The Cr 2p3/2 and N 1s of XPS spectra also confirmed the evolution of phase. Accordingly, all films exhibited a typical columnar structure which lies in the zone T of Thornton Model. The mixed Cr2N and Cr(N) phases showed low hardness and high friction coefficient. Cr2N possessed higher hardness than CrN while CrN exhibited lower friction coefficient.  相似文献   

8.
Herein is a report of a study on a Cd1−xZnxS thin film grown on an ITO substrate using a chemical bath deposition technique. The as-deposited films were annealed in air at 400 °C for 30 min. The composition, surface morphology and structural properties of the as-deposited and annealed Cd1−xZnxS thin films were studied using EDX, SEM and X-ray diffraction techniques. The annealed films have been observed to possess a crystalline nature with a hexagonal structure. The optical absorption spectra were recorded within the range of 350-800 nm. The band gap of the as-deposited thin films varied from 2.46 to 2.62 eV, whereas in the annealed film these varied from 2.42 to 2.59 eV. The decreased band gap of the films after annealing was due to the improved crystalline nature of the material.  相似文献   

9.
Cr1−xAlxC films were deposited on high-speed steel by RF reactive magnetron sputtering. In this study, we aimed to identify the effect of the Al content on the properties of Cr1−xAlxC films. We found that Cr1−xAlxC films exhibited a fine columnar grain microstructure with some special characteristics, such as high hardness of Hv 1426, a low friction coefficient of 0.29, and a large contact angle of 90° for x = 0.18. Furthermore, an increase in Al content resulted in a decrease in film hardness and an increase in contact angle. Moreover, on annealing at 923 K, the mechanical properties of the films improved and a dense protective film of complex Cr2O3 and Al2O3 oxides was formed on the surface for better wear resistance, which will ultimately increase the lifetime of the high-speed steel substrate.  相似文献   

10.
The crystal structure, band gap energy and bowing parameter of In-rich InxAl1−xN (0.7 < x < 1.0) films grown by magnetron sputtering were investigated. Band gap energies of InxAl1−xN films were obtained from absorption spectra. Band gap tailing due to compositional fluctuation in the films was observed. The band gap of the as-grown InN measured by optical absorption method is 1.34 eV, which is larger than the reported 0.7 eV for pure InN prepared by molecular beam epitaxy (MBE) method. This could be explained by the Burstein-Moss effect under carrier concentration of 1020 cm−3 of our sputtered films. The bowing parameter of 3.68 eV is obtained for our InxAl1−xN film which is consistent with the previous experimental reports and theoretical calculations.  相似文献   

11.
In the present work, a series of thick Ni0.6Mg0.3Mn1.5−xAl0.6+xO4(x = 0, 0.1, 0.2, 0.4, 0.6) films (50 ± 10 μm) with negative temperature coefficient (NTC) were firstly deposited by newly developed high efficiency supersonic atmospheric plasma spray (SAPS) method. The phase, microstructure and electrical properties of films were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and two-probe technique. The results showed that all the films were composed of cubic spinel structure, and the MgAl2O4 phase increased with increasing the Al2O3 content in the original powders. In addition, the films showed a dense and smooth surface with some pores in the grain boundaries. All the as-sprayed films showed a linear relationship between ln resistivity and reciprocal of absolute temperature (1/T) in the temperature range from 25 °C to 220 °C, which indicated a NTC characteristic.  相似文献   

12.
Sn1−xMnxO2 (x=0.01-0.05) thin films were synthesized on quartz substrate using an inexpensive ultrasonic spray pyrolysis technique. The influence of doping concentration and substrate temperature on structural and magnetic properties of Sn1−xMnxO2 thin films was systematically investigated. X-ray diffraction (XRD) studies of these films reflect that the Mn3+ ions have substituted Sn4+ ions without changing the tetragonal rutile structure of pure SnO2. A linear increase in c-axis lattice constant has been observed with corresponding increase in Mn concentration. No impurity phase was detected in XRD patterns even after doping 5 at% of Mn. A systematic change in magnetic behavior from ferromagnetic to paramagnetic was observed with increase in substrate temperature from 500 to 700 °C for Sn1−xMnxO2 (x=0.01) films. Magnetic studies reveal room-temperature ferromagnetism (RTFM) with 3.61×10−4 emu saturation magnetization and 92 Oe coercivity in case of Sn1−xMnxO2 (x=0.01) films deposited at 500 °C. However, paramagnetic behavior was observed for the films deposited at a higher substrate temperature of 700 °C. The presence of room-temperature ferromagnetism in these films was observed to have an intrinsic origin and could be obtained by controlling the substrate temperature and Mn doping concentration.  相似文献   

13.
Improvement of mechanical and tribological properties on AISI D3 steel surfaces coated with [Ti-Al/Ti-Al-N]n multilayer systems deposited in various bilayer periods (Λ) via magnetron co-sputtering pulsed d.c. method, from a metallic binary target; has been studied in this work exhaustively. The multilayer coatings were characterized in terms of structural, chemical, morphological, mechanical and tribological properties by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy, nanoindentation, pin-on-disc and scratch tests, respectively. The failure mode mechanisms were studied by optical microscopy. Results from X-ray diffraction analysis revealed that the crystal structure of TiAl/TiAlN multilayer coatings has a tetragonal and FCC NaCl-type lattice structures for Ti-Al and Ti-Al-N, respectively, i.e., it was found to be non-isostructural multilayers. An enhancement of both hardness and elastic modulus up to 29 GPa and 260 GPa, respectively, was observed as the bilayer periods (Λ) in the coatings were decreased. The sample with a bilayer period (Λ) of 25 nm and bilayer number n = 100 showed the lowest friction coefficient (∼0.28) and the highest critical load (45 N), corresponding to 2.7 and 1.5 times better than those values for the coating deposited with n = 1, respectively. These results indicate an enhancement of mechanical, tribological and adhesion properties, comparing to the [Ti-Al/Ti-Al-N]n multilayer systems with 1 bilayer at 26%, 63% and 33%, respectively. This enhancement in hardness and toughness for multilayer coatings could be attributed to the different mechanisms for layer formation with nanometric thickness such as the novel Ti-Al/Ti-Al-N effect and the number of interfaces that act as obstacles for the crack deflection and dissipation of crack energy.  相似文献   

14.
InxGa1−xN thin films with In concentration ranging from 25 to 34 at.% were deposited on sapphire substrate by metal-organic chemical vapor deposition (MOCVD). Crystalline structure and surface morphology of the deposited films were studied by using X-ray diffraction (XRD) and atomic force microscopy (AFM). Hardness, Young's modulus and creep resistance were measured using a nanoindenter. Among the deposited films, In0.25Ga0.75N film exhibits a larger grain size and a higher surface roughness. Results indicate that hardness decreases slightly with increasing In concentration in the InxGa1−xN films ranged from 16.6 ± 1.1 to 16.1 ± 0.7 GPa and, Young's modulus for the In0.25Ga0.75N, In0.3Ga0.7N and In0.34Ga0.66N films are 375.8 ± 23.1, 322.4 ± 13.5 and 373.9 ± 28.6 GPa, respectively. In addition, the time-dependent nanoindentation creep experiments are presented in this article.  相似文献   

15.
W.B. Mi 《Applied Surface Science》2006,252(24):8688-8694
FePt-C granular films doped with different Cu atomic fractions (xCu) were fabricated using facing-target sputtering at room temperature and subsequently annealed at 650 °C. Structural analyses reveal that the as-deposited films are in amorphous state. Appropriate Cu addition (xCu = 14) can improve the ordering of L10 FePt phase, and excessive Cu doping destroys the formation of ordered L10 phase with the appearance of Fe3C and CuPt phases. Besides, preferential graphitization of amorphous carbon (a-C) occurs near large metal particles upon annealing. Annealing turns the as-deposited superparamagnetic films into ferromagnetic associated with coercivity peaks at xCu = 14, drops from ∼11.2 kOe at 5 K to ∼7.2 kOe at 300 K in a 50 kOe field.  相似文献   

16.
The effect of Cr100−xTix underlayer on orderd-L10 FePt films was investigated. A low-temperature ordering of FePt films could be attained through changing the Ti content of Cr100−xTix underlayer. The ordering temperature of the 30 nm FePt film grown on 20 nm Cr90Ti10 underlayer was reduced to 250 °C which is practical manufacture process temperature. An in-plane coercivity was very high to 6000 Oe and a ratio of remnant magnetization (Mr) to saturation magnetization (Ms) was as large as 0.85. This result indicates that the coercivity obtained at 250 °C by the effect of CrTi underlayer is significantly higher than those obtained at 250-275 °C by the effect of underlayers in other conventional studies. The prominent improvement of the magnetic properties of ordered FePt thin films at low temperature of 250 °C could be understood with considering the strain-induced ordering phase transformation associated with lattice mismatch between Cr underlayer and FePt magnetic layer due to an addition of Ti content.  相似文献   

17.
The effect of Al mole fractions on the structural and electrical properties of AlxGa1−xN/GaN thin films grown by plasma-assisted molecular beam epitaxy (PA-MBE) on Si (1 1 1) substrates has been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and current-voltage (I-V) measurements. X-ray results revealed that the AlGaN/GaN/AlN was epitaxially grown on Si substrate. By applying Vegard's law, the Al mole fractions of AlxGa1−xN samples were found to be 0.11, 0.24, 0.30 and 0.43, respectively. The structural and morphology results indicated that there is a relatively larger tensile strain for the sample with the smallest Al mole fraction; while a smaller compressive strain and larger grain size appear with Al mole fraction equal to 0.30. The strain gets relaxed with the highest Al mole fraction sample. Finally, the linear relationship between the barrier height and Al mole fraction was obtained.  相似文献   

18.
Mixed thin films of (CdO)1−x(PbO)x and (CdS)1−x(PbS)x (x=0.25) were prepared on glass substrates by spray pyrolysis technique for various substrate temperatures 300, 320 and 340 °C. Structural and optical properties were studied. XRD studies reveal the formation of mixed films. The substrate temperature of 340 °C seems to be critical for the formation of CdO-PbO mixed films. It is observed that (CdS)1−x(PbS)x mixed films were formed at all the three substrate temperatures. The direct band gap value of (CdO)1−x(PbO)x and (CdS)1−x(PbS)x mixed films is about 2.6 and 2.37 eV, respectively.  相似文献   

19.
Solution Growth Technique (SGT) has been used for deposition of Zn1−xCdS nanocrystalline thin films. Various parameters such as solution pH (10.4), deposition time, concentration of ions, composition and deposition and annealing temperatures have been optimized for the development of device grade thin film. In order to achieve uniformity and adhesiveness of thin film on glass substrate, 5 ml triethanolamine (TEA) have been added in deposition solution. The as-deposited films have been annealed in Rapid Thermal Annealing (RTA) system at various temperature ranges from 100 to 500 °C in air. The changes in structural formation and optical transport phenomena have been studied with annealing temperatures and composition value (x). As-deposited films have two phases of ZnS and CdS, which were confirmed by X-ray diffraction studies; further the X-ray analysis of annealed (380 °C) films indicates that the films have nanocrystalline size (150 nm) and crystal structure depends on the films stoichiometry and annealing temperatures. The Zn0.4CdS films annealed at 380 °C in air for 5 min have hexagonal structure where as films annealed at 500 °C have represented the oxide phase with hexagonal structure. Optical properties of the films were studied in the wavelength range 350-1000 nm. The optical band gap (Eg=2.94-2.30 eV) decreases with the composition (x) value. The effect of air rapid annealing on the photoresponse has also been observed on Zn1−xCdS nanocrystal thin films. The Zn1−xCdS thin film has higher photosensitivity at higher annealing temperatures (380-500 °C), and films also have mixed Zn1−xCdS/Zn1−xCdSO phase with larger grain size than the as-deposited and films annealed up to 380 °C. The present results are well agreed with the results of other studies.  相似文献   

20.
The (Pb0.90La0.10)Ti0.975O3/PbTiO3 (PLT/PT), PbTiO3/(Pb0.90La0.10)Ti0.975O3/PbTiO3 (PT/PLT/PT) multilayered thin films with a PbOx buffer layer were in situ deposited by RF magnetron sputtering at the substrate temperature of 600 °C. With this method, highly (1 0 0)-oriented PLT/PT and PT/PLT/PT multilayered thin films were obtained. The PbOx buffer layer leads to the (1 0 0) orientation of the films. The dielectric, ferroelectric and pyroelectric properties of the PLT multilayered thin films were investigated. It is found that highly (1 0 0)-oriented PT/PLT/PT multilayered thin films possess higher remnant polarization 2Pr (44.1 μC/cm2) and better pyroelectric coefficient at room temperature p (p = 2.425 × 10−8 C/cm2 K) than these of PLT and PLT/PT thin films. These results indicate that the design of the PT/PLT/PT multilayered thin films with a PbOx buffer layer should be an effective way to enhance the dielectric, ferroelectric and pyroelectric properties. The mechanism of the enhanced ferroelectric properties was also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号