首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we present studies on ZnO thin films (prepared using Chemical Spray pyrolysis (CSP) technique) doped in two different ways; in one set, ‘single doping’ using indium was done while in the second set, ‘co-doping’ using indium and fluorine was adopted. In the former case, effect of in-situ as well as ex-situ doping using In was analyzed. Structural (XRD studies), electrical (I-V measurements) and optical characterizations (through absorption, transmission and photoluminescence studies) of the films were done. XRD analysis showed that, for spray-deposited ZnO films, ex-situ doping using Indium resulted in preferred (0 0 2) plane orientation, while in-situ doping caused preferred orientation along (1 0 0), (0 0 2), (1 0 1) planes; however for higher percentage of in-situ doping, orientation of grains changed from (0 0 2) plane to (1 0 1) plane. The co-doped films had (0 0 2) and (1 0 1) planes. Lowest resistivity (2 × 10−3 Ω cm) was achieved for the films, doped with 1% Indium through in-situ method. Photoluminescence (PL) emissions of ex-situ doped and co-doped samples had two peaks; one was the ‘near band edge’ emission (NBE) and the other was the ‘blue-green’ emission. But interestingly the PL emission of in-situ doped samples exhibited only the ‘near band edge’ emission. Optical band gap of the films increased with doping percentage, in all cases of doping.  相似文献   

2.
The structural and photoluminescence analyses were performed on un-doped and Mn doped ZnO thin films grown on Si (1 0 0) substrate by pulsed laser deposition (PLD) and annealed at different post-deposition temperatures (500-800 °C). X-ray diffraction (XRD), employed to study the structural properties, showed an improved crystallinity at elevated temperatures with a consistent decrease in the lattice parameter ‘c’. The peak broadening in XRD spectra and the presence of Mn 2p3/2 peak at ∼640 eV in X-ray Photoelectron Spectroscopic (XPS) spectra of the doped thin films confirmed the successful incorporation of Mn in ZnO host matrix. Extended near band edge emission (NBE) spectra indicated the reduction in the concentration of the intrinsic surface traps in comparison to the doped ones resulting in improved optical transparency. Reduced deep level emission (DLE) spectra in doped thin films with declined PL ratio validated the quenching of the intrinsic surface traps thereby improving the optical transparency and the band gap, essential for optoelectronic and spintronic applications. Furthermore, the formation and uniform distribution of nano-sized grains with improved surface features of Mn-doped ZnO thin films were observed in Field Emission Scanning Electron Microscopy (FESEM) images.  相似文献   

3.
Al doped ZnO thin films are prepared by pulsed laser deposition on quartz substrate at substrate temperature 873 K under a background oxygen pressure of 0.02 mbar. The films are systematically analyzed using X-ray diffraction, atomic force microscopy, micro-Raman spectroscopy, UV-vis spectroscopy, photoluminescence spectroscopy, z-scan and temperature-dependent electrical resistivity measurements in the temperature range 70-300 K. XRD patterns show that all the films are well crystallized with hexagonal wurtzite structure with preferred orientation along (0 0 2) plane. Particle size calculations based on XRD analysis show that all the films are nanocrystalline in nature with the size of the quantum dots ranging from 8 to 17 nm. The presence of high frequency E2 mode and longitudinal optical A1 (LO) modes in the Raman spectra suggest a hexagonal wurtzite structure for the films. AFM analysis reveals the agglomerated growth mode in the doped films and it reduces the nucleation barrier of ZnO by Al doping. The 1% Al doped ZnO film presents high transmittance of ∼75% in the visible and near infrared region and low dc electrical resistivity of 5.94 × 10−6 Ω m. PL spectra show emissions corresponding to the near band edge (NBE) ultra violet emission and deep level emission in the visible region. Nonlinear optical measurements using the z-scan technique shows optical limiting behavior for the 5% Al doped ZnO film.  相似文献   

4.
Pure and tin doped zinc oxide (Sn:ZnO) thin films were prepared for the first time by NSP technique using aqueous solutions of zinc acetate dehydrate, tin (IV) chloride fendahydrate and methanol. X-ray diffraction patterns confirm that the films are polycrystalline in nature exhibiting hexagonal wurtzite type, with (0 0 2) as preferred orientation. The structural parameters such as lattice constant (‘a’ and ‘c’), crystallite size, dislocation density, micro strain, stress and texture coefficient were calculated from X-ray diffraction studies. Surface morphology was found to be modified with increasing Sn doping concentration. The ZnO films have high transmittance 85% in the visible region, and the transmittance is found to be decreased with the increase of Sn doping concentration. The corresponding optical band gap decreases from 3.25 to 3.08 eV. Room temperature photoluminescence reveals the sharp emission of strong UV peak at 400 nm (3.10 eV) and a strong sharp green luminescence at 528 nm (2.34 eV) in the Sn doped ZnO films. The electrical resistivity is found to be 106 Ω-cm at higher temperature and 105 Ω-cm at lower temperature.  相似文献   

5.
Zirconium doped zinc oxide thin films with enhanced optical transparency were prepared on Corning 1737 glass substrates at the substrate temperature of 400 °C by spray pyrolysis method for various doping concentrations of zirconium (IV) chloride in the spray solution. The X-ray diffraction studies reveal that the films exhibit hexagonal crystal structure with polycrystalline grains oriented along (0 0 2) direction. The crystalline quality of the films is found to be deteriorating with the increase of doping concentration and acquires amorphous state for higher concentration of 8 at.% in precursor solution. The average transmittance for 5 at.% (solution) zirconium doped ZnO film is significantly increased to ∼92% in the visible region of 500-800 nm. The room temperature photoluminescence (PL) spectra of films show a band edge between 3.41 and 3.2 eV and strong blue emission at 2.8 eV irrespective of doping concentration and however intensity increases consistently with doping levels. The vacuum annealing at 400 °C reduced the resistivity of the films significantly due to the coalescence of grains and the lowest resistivity of 2 × 10−3 Ω cm is observed for 3 at.% (solution) Zr doped ZnO films which envisages that it is a good candidate for stable TCO material.  相似文献   

6.
Pure and Cu-doped ZnO (ZnO:Cu) thin films were deposited on glass substrates using radio frequency (RF) reactive magnetron sputtering. The effect of substrate temperature on the crystallization behavior and optical properties of the ZnO:Cu films have been studied. The crystal structures, surface morphology and optical properties of the films were systematically investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and a fluorescence spectrophotometer, respectively. The results indicated that ZnO films showed a stronger preferred orientation toward the c-axis and a more uniform grain size after Cu-doping. As for ZnO:Cu films, the full width at half maxima (FWHM) of (0 0 2) diffraction peaks decreased first and then increased, reaching a minimum of about 0.42° at 350 °C and the compressive stress of ZnO:Cu decreased gradually with the increase of substrate temperature. The photoluminescence (PL) spectra measured at room temperature revealed two blue and two green emissions. Intense blue-green luminescence was obtained from the sample deposited at higher substrate temperature. Finally, we discussed the influence of annealing temperature on the structural and optical properties of ZnO:Cu films. The quality of ZnO:Cu film was markedly improved and the intensity of blue peak (∼485 nm) and green peak (∼527 nm) increased noticeably after annealing. The origin of these emissions was discussed.  相似文献   

7.
Undoped and Mg-doped ZnO thin films were deposited on Si(1 0 0) and quartz substrates by the sol-gel method. The thin films were annealed at 873 K for 60 min. Microstructure, surface topography and optical properties of the thin films have been measured by X-ray diffraction (XRD), atomic force microscope (AFM), UV-vis spectrophotometer, and fluorophotometer (FL), respectively. The XRD results show that the polycrystalline with hexagonal wurtzite structure are observed for the ZnO thin film with Mg:Zn = 0.0, 0.02, and 0.04, while a secondary phase of MgO is evolved for the thin film with Mg:Zn = 0.08. The ZnO:Mg-2% thin film exhibits high c-axis preferred orientation. AFM studies reveal that rms roughness of the thin films changes from 7.89 nm to 16.9 nm with increasing Mg concentrations. PL spectra show that the UV-violet emission band around 386-402 nm and the blue emission peak about 460 nm are observed. The optical band gap calculated from absorption spectra and the resistivity of the ZnO thin films increase with increasing Mg concentration. In addition, the effects of Mg concentrations on microstructure, surface topography, PL spectra and electrical properties are discussed.  相似文献   

8.
In this work, we report on the electrodeposition of ZnO thin films on n-Si (1 0 0) and glass substrates. The influence of the deposition time on the morphology of ZnO thin films was investigated. The ZnO thin films were characterized by X-ray diffraction (XRD), energy dispersive X-ray (EDS) and scanning electron microscopy (SEM). The results show a variation of ZnO texture from main (0 0 2) at 10 min to totally (1 0 1) at 15 min deposition time. The photoluminescence (PL) studies show that both UV (∼382 nm) and blue (∼432 nm) luminescences are the main emissions for the electrodeposited ZnO films. In addition, the film grown at 15 min indicates an evident decrease of the yellow-green (∼520 nm) emission band comparing with that of 10 min. Finally, transmittance spectra show a high transmission value up to 85% in the visible wavelength range. Such results would be very interesting for solar cells applications.  相似文献   

9.
We have deposited zinc oxide (ZnO) and erbium doped zinc oxide (ZnO:Er) thin films on heated glass substrates using spray pyrolysis technique. The effect of erbium dopant on structural, morphological, luminescent and nonlinear optical properties was studied. The deposited films have been analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), ex situ compositional analysis (ESCA), profilometry, cathodoluminescence (CL) and third harmonic generation (THG) measurements. All films were polycrystalline, having a preferential growth orientation along the ZnO (0 0 2) plane, with a corresponding average crystallite size of less than 41 nm. Addition of erbium can effectively control the film surface morphology and its cathodoluminescent properties. The films containing low erbium concentration show a uniform surface covered with hexagonal shaped grains and a strong UV light emission intensity as well as TH response. In contrast, when the erbium doping ratio exceeds 3%, a porous surface with columnar textural growth becomes more pronounced, and a substantial reduction of the cathodoluminescent and TH response. A strong TH signal was obtained for the film with good crystalline quality at the concentration of 2%. Third order nonlinear optical susceptibility (χ〈3〉) values of the studied materials were in the remarkable range of 10−12 esu.  相似文献   

10.
ZnO thin films were prepared by pulsed laser deposition at room temperature on glass substrates with oxygen pressures of 10-30 Pa. The structural, electrical, and optical properties of ZnO films were studied in detail. ZnO films had an acceptable crystal quality with high c-axis orientation and smooth surface. The resistivity was in the 102 Ω cm order for ZnO films, with the electron concentration of 1016-1017 cm−3. All the films showed a high visible transmittance ∼90% and a high UV absorption about 90-100%. The UV emission ∼390 nm was observed in the photoluminescence spectra. The oxygen pressures in the 10-30 Pa range were suitable for room temperature growth of high-quality ZnO films.  相似文献   

11.
To resolve the problem of p-type doping in ZnO, nitrogen and aluminum (N-Al) codoped ZnO films were prepared by the ultrasonic spray pyrolysis (USP) technique. The structural and electrical properties of N-Al codoped ZnO films were investigated. The results demonstrate that the undoped ZnO films exhibit the preferential orientation of (002) plane, while ZnO films show high orientation of (101) plane after codoping with N and Al. The N-Al codoped ZnO films under optimum conditions show p-type conduction, with a low resistivity of 1.7×10−2Ω cm, carrier concentration of 5.09×1018 cm−3 and high Hall mobility of 73.6 cm2 V−1 s−1. A conversion from p-type conduction to n-type was observed during the increase of measurement temperature.  相似文献   

12.
Highly transparent, n-type conducting ZnO thin films were obtained by low temperature magnetron sputtering of (Co, Al) co-doped ZnO nanocrystalline aerogels. The nanoparticles of ∼30 nm size were synthesized by a sol-gel method using supercritical drying in ethyl alcohol. The structural, optical and electrical properties of the films were investigated. The ZnO films were polycrystalline textured, preferentially oriented with the (0 0 2) crystallographic direction normal to the film plane. The films show within the visible wavelength region an optical transmittance of more than 90% and a low electrical resistivity of 3.5 × 10−4 Ω cm at room temperature.  相似文献   

13.
ZnO:Ag films were grown on Si (1 0 0) substrates by ultrasonic spray pyrolysis at various substrate temperatures. The effect of deposition temperature on the structural and the room temperature photoluminescence (RT-PL) properties of ZnO:Ag films was studied. With the deposition temperature rising to 550 °C, the intensity of the near-band edge (NBE) emission at 378 nm decreased and a new emission peak at 399 nm was observed. On the basis of the X-ray diffraction pattern (XRD), the X-ray photoelectron (XPS) spectra of ZnO:Ag films, and the effects of annealing on the PL, we suggest that the 399 nm emission should be attributed to the electron transition from the conduction band to AgZn-related complexes defects radiative centers above the valence band.  相似文献   

14.
Undoped ZnO thin films have been deposited onto glass substrates by spray pyrolysis. The structural, electrical and optical properties were studied on thin films, prepared from precursor solutions with varying the ethanol concentrations. X-ray diffraction studies have shown polycrystalline nature of the films with a hexagonal wurtzite-type structure. The preferential orientation plane (1 0 0) of the ZnO thin film is found to be sensitive to ethanol concentration. The texture coefficient (TC) and grain size value have been calculated. Also ethanol concentration was found to have significant effect on sheet resistivity of the films.  相似文献   

15.
Nanocrystalline ZnO thin films are deposited through two different chemical methods: (i) the films prepared by ultrasonic spray with 0.1 M and (ii) dip-coating from zinc acetate complex solutions with 0.5 M, the films obtained at different temperatures. The XRD analyses indicated that ZnO films have nanocrystalline hexagonal structure with (0 0 2) preferential orientation and the maximum crystallite size value of 103 nm measured from the films prepared by dip-coating. UV?vis measurement indicated that all films are transparency in the visible region. The optical band gap increased with decreasing of the Urbach tail energy indicating that the increase in the transition tail width and decrease of the defects, respectively.  相似文献   

16.
High-frequency surface acoustic wave (SAW) filters using undoped and V-doped ZnO films were fabricated on diamond. Compared with their counterparts, the SAW filters using V-doped ZnO films have higher electromechanical coupling coefficient of ∼2.9% and lower insertion loss. The filtering performance improvement is considered to be due to the ferroelectricity in V-doped ZnO films and the resultant high piezoresponse (∼110 pm/V), which is one order of magnitude larger than that of undoped ZnO films. In addition, more perfect (0 0 2) preferred orientation, better uniform grains and smoother surface of V-doped ZnO films also contribute to the filtering performance improvement.  相似文献   

17.
Ti-doped ZnO (ZnO:Ti) thin films were deposited on the glass and Si substrates using radio frequency reactive magnetron sputtering. The effects of substrate on the microstructures and optical properties of ZnO:Ti thin films were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and a fluorescence spectrophotometer. The structural analyses of the films indicated that they were polycrystalline and had a hexagonal wurtzite structure on different substrates. When ZnO:Ti thin film was deposited on Si substrate, the film had a c-axis preferred orientation, while preferred orientation of ZnO:Ti thin film deposited on glass substrate changed towards (1 0 0). Finally, we discussed the influence of the oxygen partial pressures on the structural and optical properties of glass-substrate ZnO:Ti thin films. At a high ratio of O2:Ar of 18:10 sccm, the intensity of (0 0 2) diffraction peak was stronger than that of (1 0 0) diffraction peak, which indicated that preferred orientation changed with the increase of O2:Ar ratios. The average optical transmittance with over 93% in the visible range was obtained independent of the O2:Ar ratio. The photoluminescence (PL) spectra measured at room temperature revealed four main emission peaks located at 428, 444, 476 and 527 nm. Intense blue-green luminescence was obtained from the sample deposited at a ratio of O2:Ar of 14:10 sccm. The results showed that the oxygen partial pressures had an important influence for PL spectra and the origin of these emissions was discussed.  相似文献   

18.
Nanoindentation studies are carried out on epitaxial ZnO and GaN thin films on (0 0 0 1) sapphire and silicon substrates, respectively. A single discontinuity (‘pop-in’) in the load-indentation depth curve is observed for ZnO and GaN films at a specific depths of 13-16 and 23-26 nm, respectively. The physical mechanism responsible for the ‘pop-in’ event in these epitaxial films may be due to the interaction behavior of the indenter tip with the pre-existing threading dislocations present in the films during mechanical deformation. It is observed that the ‘pop-in’ depth is dependent on lattice mismatch of the epitaxial thin film with the substrate, the higher the lattice mismatch the shallower the critical ‘pop-in’ depth.  相似文献   

19.
Al-N co-doped ZnO films were fabricated by gaseous ammonia annealing at various temperatures. The structure and the electrical properties of Al-N-doped ZnO films strongly depend on the annealing temperature. XRD and SEM analysis indicate that the ZnO films possess a good crystallinity with c-axis orientation, uniform thickness and dense surface. Optical transmission spectra show a high transmittance (∼85%) in the visible region. Hall measurement demonstrates that ZnO films have p-type conduction with high carrier concentration of 8.3 × 1018 cm−3 and low resistivity of 25.0 Ω cm when the annealing temperature is 700 °C. Also the growth process of Al-N co-doped at various temperatures is discussed in detail.  相似文献   

20.
Multipod ZnO whiskers were synthesized successfully by two steps: pulsed laser deposition (PLD) and thermal evaporation process. First, a thin layer of Zn films were deposited on Si(1 1 1) substrates by PLD. Then the whiskers grew on Zn-coated Si(1 1 1) substrate by the simple thermal evaporation oxidation of the metallic zinc powder at 900 °C in the air without any catalysts or additives. The pre-deposited Zn films by PLD on the substrate can promote the growth of ZnO multipod whiskers effectively. The as-synthesized ZnO whiskers were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). The results revealed that the whiskers are highly crystalline with the wurtzite hexagonal structure. Room temperature photoluminescence (PL) spectrum of the whiskers shows a UV emission peak at ∼393 nm and a broad green emission peak at ∼517 nm, which was assigned to the near band-edge emission and the deep-level emission, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号