首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The growth mode and electronic structure of Au nano-clusters grown on NiO and TiO2 were analyzed by reflection high-energy electron diffraction, a field-emission type scanning electron microscope, medium energy ion scattering and photoelectron spectroscopy. Au was deposited on clean NiO(0 0 1)-1 × 1 and TiO2(1 1 0)-1 × 1 surfaces at room temperature with a Knudsen cell at a rate of 0.25-0.35 ML/min (1 ML = 1.39 × 1015 atoms/cm2:Au(1 1 1)). Initially two-dimensional (2D) islands with thickness of one Au-atom layer grow epitaxially on NiO(0 0 1) and then neighboring 2D-islands link each other to form three-dimensional (3D)-islands with the c-axis oriented to the [1 1 1] direction. The critical size to form 3D-islands is estimated to be about 5 nm2. The shape of the 3D-islands is well approximated by a partial sphere with a diameter d and height h ranging from 2.0 to 11.8 nm and from 0.95 to 4.2 nm, respectively for Au coverage from 0.13 to 4.6 ML. The valence band spectra show that the Au/NiO and Au/TiO2 surfaces have metallic characters for Au coverage above 0.9 ML. We observed Au 4f spectra and found no binding energy shift for Au/NiO but significant higher binding energy shifts for Au/TiO2 due to an electron charge transfer from Au to TiO2. The work function of Au/NiO(0 0 1) gradually increases with increase in Au coverage from 4.4 eV (NiO(0 0 1)) to 5.36 eV (Au(1 1 1)). In contrast, a small Au deposition(0.15 to 1.5 ML) on TiO2(1 1 0) leads to reduction of the work function, which is correlated with an electron charge transfer from Au to TiO2 substrate.  相似文献   

2.
p-Type nickel oxide thin films were prepared by sol-gel method, and their structural, optical and electrical properties were investigated. The Ni(OH)2 sol was formed from nickel (II) acetate tetrahydrate, Ni(CH3COO)2·4H2O, in a mixture of alcohol solution and poly(ethylene glycol), and deposited on an ITO substrate by spin coating followed by different heat treatments in air (50-800 °C). The formation and composition of NiO thin film was justified by EDX analysis. It is found that the thickness of the NiO film calcined at 450 °C for 1 h is about 120 nm with average particle size of 22 nm, and high UV transparency (∼75%) in the visible region is also observed. However, the transmittance is negligible for thin films calcined at 800 °C and below 200 °C due to larger particle size and the amorphous characteristics, respectively. Moreover, the composite electrode comprising n-type TiO2 and p-type NiO is fabricated. The current-voltage (I-V) characteristics of the composite TiO2/NiO electrode demonstrate significant p-type behavior by the shape of the rectifying curve in dark. The effect of calcination temperature on the rectification behavior is also discussed.  相似文献   

3.
In order to apply two-dimensional electron-gas-field-effect-transistors (2DEG-FETs) for cell-viability sensors, we investigated the chemical/electrical properties of TiO2 thin films (13-17 nm) prepared with the sol-gel technique on the gate surface of AlGaAs/GaAs 2DEG-FETs. Photochemical/electrochemical reactions on GaAs surface in electrolytes, which induce the degradation of 2DEG-FET performance, are effectively suppressed by introducing a TiO2 thin film on the gate area of 2DEG-FETs. Compared to conventional ion-selective FETs (ISFETs), the TiO2/2DEG-FETs in this study exhibit a high sensitivity (410 mV/mM) for H2O2 detection. TiO2 surfaces show better biocompatibility than GaAs surfaces as demonstrated by direct cell culture on these surfaces.  相似文献   

4.
TiO2 sol-gels with various Ag/TiO2 molar ratios from 0 to 0.9% were used to fabricate silver-modified nano-structured TiO2 thin films using a layer-by-layer dip-coating (LLDC) technique. This technique allows obtaining TiO2 nano-structured thin films with a silver hierarchical configuration. The coating of pure TiO2 sol-gel and Ag-modified sol-gel was marked as T and A, respectively. According to the coating order and the nature of the TiO2 sol-gel, four types of the TiO2 thin films were constructed, and marked as AT (bottom layer was Ag modified, surface layer was pure TiO2), TA (bottom layer was pure TiO2, surface layer was Ag modified), TT (pure TiO2 thin film) and AA (TiO2 thin film was uniformly Ag modified). These thin films were characterized by means of linear sweep voltammetry (LSV), X-ray diffraction (XRD), scanning electron microscopy (SEM), electrochemical impedance spectroscopy and transient photocurrent (Iph). LSV confirmed the existence of Ag0 state in the TiO2 thin film. SEM and XRD experiments indicated that the sizes of the TiO2 nanoparticles of the resulting films were in the order of TT > AT > TA > AA, suggesting the gradient Ag distribution in the films. The SEM and XRD results also confirmed that Ag had an inhibition effect on the size growth of anatase nanoparticles. Photocatalytic activities of the resulting thin films were also evaluated in the photocatalytic degradation process of methyl orange. The preliminary results demonstrated the sequence of the photocatalytic activity of the resulting films was AT > TA > AA > TT. This suggested that the silver hierarchical configuration can be used to improve the photocatalytic activity of TiO2 thin film.  相似文献   

5.
In this work, hierarchically porous TiO2–B nanoflowers have been successfully synthesized via a facile solvothermal method followed by calcination treatment. The TiO2–B nanoflowers are constructed by thin nanosheets, presenting ultrahigh specific surface area, up to 214.6 m2 g−1. As anode materials for Li-ion batteries, the TiO2–B sample shows high reversible capacity, excellent cycling performance and superior rate capability. The specific capacity of TiO2–B could remain over 285 mA h g−1 at 1 C and 181 mA h g−1 at 10 C rate after 100 cycles. We believe that the pseudocapacitive mechanism, ultrahigh surface area and scrupulous nanoarchitecture of the TiO2–B are responsible for the enhancement of electrochemical properties.  相似文献   

6.
The electrochemical properties of carbon films, of thickness between 200 and 500 nm, sputter-coated on gold- and platinum-coated 6 MHz piezoelectric quartz crystal oscillators, as new electrode materials have been investigated. Comparative studies under the same experimental conditions were performed on bulk electrodes. Cyclic voltammetry was carried out in 0.1 M KCl electrolyte solution, and kinetic parameters of the model redox systems Fe(CN)63−/4− and [Ru(NH3)6]3+/2+ as well as the electroactive area of the electrodes were obtained. Atomic force microscopy was used in order to examine the surface morphology of the films, and the properties of the carbon films and the electrode-solution interface were studied by electrochemical impedance spectroscopy. The results obtained demonstrate the feasibility of the preparation and development of nanometer thick carbon film modified quartz crystals. Such modified crystals should open up new opportunities for the investigation of electrode processes at carbon electrodes and for the application of electrochemical sensing associated with the EQCM.  相似文献   

7.
In this research, dye-sensitized solar cells based on TiO2 micro-pillars fabricated by inductive couple plasma etcher were investigated by analyses of X-ray diffraction (XRD), scanning electron microscopy (SEM), contact angle, ultraviolet-visible absorption spectra (UV-vis), and current-voltage characteristics. X-ray diffraction patterns show that the TiO2 anatase phase forms while sintering at 450 °C for 30 min. The SEM images reveal that the diameter and height of TiO2 micro-pillars are about 3 and 0.8 μm, respectively. The measurements of contact angle between TiO2 micro-pillars and deionized water (DI water) reveal that the TiO2 micro-pillars is super-hydrophilic while annealed at 450 °C for 30 min.The absorption spectrum of TiO2 micro-pillars is better than TiO2 thin film and can be widely improved in visible region with N3 dye adsorbed. The results of current-voltage (I-V) characteristics analysis reveal that dye-sensitized solar cell with TiO2 micro-pillars electrode has better I-V characteristics and efficiency than TiO2 film electrodes. This result may be due to the annealed TiO2 micro-pillars applied on the electrode of dye-sensitized solar cell can increase the contact area between TiO2 and dye, resulting in the enhancement of I-V characteristics and efficiency for dye-sensitized solar cell.  相似文献   

8.
We have chemically polymerized pyrrole in the presence of Sn-doped TiO2 nanoparticles (NPs) and TiO2 (NPs) which act as a protective pigment. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) results show a core-shell structure of pigments in which TiO2 and Sn-doped TiO2 NPs have a nucleus effect and caused a homogenous PPy core-shell type morphology leading to coverage of the TiO2 and Sn-doped TiO2 NPs by PPy deposit. The XRD results indicate that the crystalline size of polypyrrole/TiO2 NCs and polypyrrole/Sn-doped TiO2 NCs were approximately 93.46 ± 0.06 and 23.36 ± 0.06 nm respectively. The electrochemical impedance spectroscopy (EIS) results show that the performance of polypyrrole/Sn-doped TiO2 NCs is better than polypyrrole/TiO2 NCs. The results indicate that increasing the area of synthesized polypyrrole in the presence of Sn-doped TiO2 NPs can increase its ability to interact with the ions liberated during the corrosion reaction of steel in the presence of NaCl. The UV-vis results show that the band gap of TiO2 NPs increases with doped of Sn in lattice of TiO2. The increase of the band gap of TiO2 with doping of Sn can decrease the charge transfer through the coating.  相似文献   

9.
Transparent and conducting TiO2/Au/TiO2 (TAuT) films were deposited by reactive magnetron sputtering on polycarbonate substrates to investigate the effect of the Au interlayer on the optical, electrical, and structural properties of the films. In TAuT films, the Au interlayer thickness was kept at 5 nm. Although total thickness was maintained at 100 nm, the stack structure was varied as 50/5/45, 70/5/25, and 90/5/5 nm.In XRD pattern, the intermediate Au films were crystallized, while all TAuT films did not show any diffraction peaks for TiO2 films with regardless of stack structure. The optical and electrical properties were dependent on the stack structure of the films. The lowest sheet resistance of 23 Ω/□ and highest optical transmittance of 76% at 550 nm were obtained from TiO2 90 nm/Au 5 nm/TiO2 5 nm films. The work function was dependent on the film stack. The highest work function (4.8 eV) was observed with the TiO2 90 nm/Au 5 nm/TiO2 5 nm film stack. The TAuT film stack of TiO2 90 nm/Au 5 nm/TiO2 5 nm films is an optimized stack that may be an alternative candidate for transparent electrodes in flat panel displays.  相似文献   

10.
A novel composite alkaline polymer electrolyte based on poly(vinyl alcohol) (PVA) polymer matrix, titanium dioxide (TiO2) ceramic fillers, KOH, and H2O was prepared by a solution casting method. The properties of PVA-TiO2-KOH alkaline polymer electrolyte films were studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and AC impedance techniques. DSC and XRD results showed that the domain of amorphous region in the PVA polymer matrix augmented when TiO2 filler was added. The SEM result showed that TiO2 particles dispersed into the PVA matrix although some TiO2 aggregates of several micrometers were formed. The alkaline polymer electrolyte showed excellent electrochemical properties. The room temperature (20 °C) ionic conductivity values of typical samples were between 0.102 and 0.171 S cm−1. The Zn-Ni secondary battery with the alkaline polymer electrolyte PVA-TiO2-KOH had excellent electrochemical property at the low charge-discharge rate.  相似文献   

11.
Li doped (Ba,Sr)TiO3 thick films were fabricated by employing the screen printing method on the alumina (Al2O3) substrates. Interdigital capacitor patterns with seven fingers of 200 μm gap, 250 μm length were designed and screen printed on the alumina substrates. Ba0.5Sr0.5TiO3 materials, paraelectric state at the room temperature, have been chosen for the microwave devices due to high dielectric permittivity and low loss tangent, however, the sintering temperature of (Ba,Sr)TiO3 is over 1350 °C. In order to lower the sintering temperature, Li (3 wt%) was added to the (Ba,Sr)TiO3 materials. Li doped (Ba,Sr)TiO3 thick films screen printed on the alumina (Al2O3) substrates were sintered at 900 °C for 1.5 h. The structural feature was analyzed with X-ray diffraction method. Temperature dependent dielectric properties were characterized from 303 to 403 K at 1 MHz. Within the ±100 V of bias voltage, current-voltage characteristics of Li doped (Ba,Sr)TiO3 films were investigated from 303 to 403 K. Through the current-voltage characteristics, the resistivity of Li doped (Ba,Sr)TiO3 films were calculated.In this paper, the significant negative temperature coefficient of resistance (NTCR) of Li doped (Ba,Sr)TiO3 films will be presented through the activation energy fitting. Measured activation energy is approximately 0.366 eV.  相似文献   

12.
The structure of a nickel oxide film 2 ML thick has been investigated by LEED intensity analysis. The NiO film was prepared by evaporating Ni in presence of O2 at a pressure in the 10−6 mbar range. The growth of the oxide film was followed by XPS, LEIS and LEED. In the early stages of deposition, the film shows a (2 × 1) superstructure in LEED. After deposition of 2 ML of NiO, a sharp (1 × 1) LEED pattern is observed. The intensity versus electron energy curves of the LEED spots were measured for this NiO(1 × 1) film and analysed by means of the tensor LEED method. A good level of agreement of the experimental LEED intensities with those calculated for a pseudomorphic NiO(0 0 1) film was obtained. We found that oxygen atoms at the oxide-substrate interface are on-top silver atoms. The interlayer distance in the oxide does not differ significantly from that in bulk NiO(0 0 1), within the accuracy of the analysis. An outward displacement (0.05 ± 0.05 Å) of oxygen atoms with respect to nickel atoms was found at the oxide film surface. The interlayer distance at the silver-nickel oxide interface is 2.43 ± 0.05 Å.  相似文献   

13.
The fully-oxidized surface that forms on (1 1 1) oriented Ni3Al single crystals, with and without Pt addition, at 300-900 K under oxygen pressures of ca. 10−7 Torr was studied using XPS, AES, and LEIS. Two main types of surfaces form, depending upon oxidation temperature. At low-temperature, the predominant oxide is NiO, capped by a thin layer of aluminum oxide, which we refer to generically as AlxOy. At high-temperature (i.e., 700-800 K), NiO is replaced by a thick layer of AlxOy. By comparing samples that contain 0, 10 and 20 at.% Pt in the bulk, we find that the effect of Pt is to: (1) reduce the maximum amount of both NiO and AlxOy; and (2) shift the establishment of the thick AlxOy layer to lower temperatures. Platinum also decreases the adsorption probability of oxygen on the clean surface.  相似文献   

14.
The article reports on correlations between the process parameters of reactive pulsed dc magnetron sputtering, physical properties and the photocatalytic activity (PCA) of TiO2 films sputtered at substrate surface temperature Tsurf ≤ 180 °C. Films were deposited using a dual magnetron system equipped with Ti (Ø50 mm) targets in Ar + O2 atmosphere in oxide mode of sputtering. The TiO2 films with highly photoactive anatase phase were prepared without a post-deposition thermal annealing. The decomposition rate of the acid orange 7 (AO7) solution during the photoactivation of the TiO2 film with UV light was used for characterization of the film PCA. It was found that (i) the partial pressure of oxygen pO2 and the total sputtering gas pressure pT are the key deposition parameters influencing the TiO2 film phase composition that directly affects its PCA, (ii) the structure of sputtered TiO2 films varies along the growth direction from the film/substrate interface to the film surface, (iii) ∼500 nm thick anatase TiO2 films with high PCA were prepared and (iv) the structure of sputtered TiO2 films is not affected by the substrate surface temperature Tsurf when Tsurf < 180 °C. The interruption of the sputtering process and deposition in long (tens of minutes) pulses alternating with cooling pauses has no effect on the structure and the PCA of TiO2 films and results in a decrease of maximum value of Tsurf necessary for the creation of nanocrystalline nc-TiO2 film. It was demonstrated that crystalline TiO2 films with high PCA can be sputtered at Tsurf ≤ 130 °C. Based on obtained results a phase zone model of TiO2 films was developed.  相似文献   

15.
Ni doped titanate nanotubes were synthesized by hydrothermal method using Ni doped rutile TiO2 nanopowders as a starting material. The electrochemical properties were investigated by cyclic voltammmetric methods. The microstructure and morphology of the synthesized powders were characterized by XRD (X-ray diffraction), and HRTEM (high resolution transmission electron microscopy). Ni doped nanotubes were composed of H2Ti2O5·H2O with outer and inner diameter of ∼10 nm and 6 nm and showed a initial discharge capacity of 305 mAh/g with poor cycling performance. However, after firing, the Ni doped nanotubes revealed better cycling performance due to lower reaction with hydrate and smaller diameter of the tubes.  相似文献   

16.
The TiO2 nanorod arrays, with about 1.8 μm lengths, have been deposited on ITO substrates by dc reactive magnetron sputtering at different target-substrate distances. The average diameter of these nanorods can be modified from about 45 to 85 nm by adjusting the target-substrate distance from 90 to 50 mm. These nanorods are highly ordered and perpendicular to the substrate. Both XRD and Raman measurements show that the nanorods prepared at different target-substrate distances have only an anatase TiO2 phase. The nanorods prepared at the target-substrate distance less than 80 mm have a preferred orientation along the (2 2 0) direction. However, this preferred orientation disappears as the target-substrate distance is more than 80 mm. These TiO2 nanorods have been used as the electrodes for dye-sensitized solar cells (DSSCs). The highest conversion efficiency, about 4.78%, has been achieved for TiO2 nanorods prepared at 80 mm target-substrate distance.  相似文献   

17.
The electrochemical and microstructural properties of carbon film electrodes made from carbon film electrical resistors of 1.5, 15, 140 Ω and 2.0 kΩ nominal resistance have been investigated before and after electrochemical pre-treatment at +0.9 V vs SCE, in order to assess the potential use of these carbon film electrodes as electrochemical sensors and as substrates for sensors and biosensors. The results obtained are compared with those at electrodes made from previously investigated 2 Ω carbon film resistors. Cyclic voltammetry was performed in acetate buffer and phosphate buffer saline electrolytes and the kinetic parameters of the model redox system Fe(CN)63−/4− obtained. The 1.5 Ω resistor electrodes show the best properties for sensor development with wide potential windows, similar electrochemical behaviour to those of 2 Ω and close-to-reversible kinetic parameters after electrochemical pre-treatment. The 15 and 140 Ω resistor electrodes show wide potential windows although with slower kinetics, whereas the 2.0 kΩ resistor electrodes show poor cyclic voltammetric profiles even after pre-treatment. Electrochemical impedance spectroscopy related these findings to the interfacial properties of the electrodes. Microstructural and morphological studies were carried out using contact mode Atomic Force Microscopy (AFM), Confocal Raman spectroscopy and X-ray diffraction. AFM showed more homogeneity of the films with lower nominal resistances, related to better electrochemical characteristics. X-ray diffraction and Confocal Raman spectroscopy indicate the existence of a graphitic structure in the carbon films.  相似文献   

18.
M.S. Chen 《Surface science》2007,601(3):632-637
The growth of Au on an ultra-thin, ordered Mo(1 1 2)-(8 × 2)-TiOx, was investigated using scanning tunneling microscopy (STM), low energy ion scattering spectroscopy (LEISS), X-ray photoelectron spectroscopy (XPS), and temperature programmed desorption (TPD). Wetting of the TiOx surface by Au was observed with STM and LEISS, and the ordering of the Au films was atomically resolved with STM. TPD showed that Au binds more strongly to the reduced TiOx film than to bulk TiO2, but more weakly than to the Mo substrate. The Au-TiOx binding energy is greater than Au-Au in bulk Au. The oxidation state of Ti in the TiOx film was deduced by XPS and from the Ti-O phonon shifts relative to bulk TiO2. The TiOx/Mo(1 1 2) film structure and those for the (1 × 1)- and (1 × 3)-Au/TiOx/Mo(1 1 2) surfaces are discussed.  相似文献   

19.
The electrochemical activity of an electrode of carbon nanotubes (CNTs) attached with TiO2 nanoparticles was investigated. A chemical-wet impregnation was used to deposit different TiO2 particle densities onto the CNT surface, which was chemically oxidized by nitric acid. Transmission electron microscopy showed that each TiO2 nanoparticle has an average size of 30-50 nm. Nitrogen physisorption measurement indicated that the porosity of CNTs is partially hindered by some titania aggregations at high surface coverage. Cyclic voltammetry measurements in 1 M H2SO4 showed that (i) an obvious redox peak can be found after the introduction of TiO2 and (ii) the specific peak current is proportional to the TiO2 loading. This enhancement of electrochemical activity was attributed to the fact that TiO2 particles act as a redox site for the improvement of energy storage. According to our calculation, the electrochemical capacitance of TiO2 nanocatalysts in acid electrolyte was estimated to be 180 F/g. Charge-discharge cycling demonstrated that the TiO2-CNT composite electrode maintains stable cycleability of over 200 cycles.  相似文献   

20.
In this study, the TiO2 nanotubes were fabricated by electrochemical anodization in a NH4F/Na2SO4/PEG400/H2O electrolyte system. Ultrasonic wave (80 W, 40 kHz) was used to clean the surface of TiO2 nanotube arrays in the medium of water after the completion of the anodization. Surface morphology (FESEM) and X-ray diffraction spectrum of the nanotubes treated by sonication at 0 min, 9 min, 40 min and 60 min were compared. The experimental results showed that the precipitate on the surface of the nanotube arrays could be removed by the ultrasonic wave. The treating time had an influence on the precipitate removal and 9 min (corresponding to 12 Wh) is the suitable time for surface cleaning of the TiO2 nanotubes on this experimental condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号