首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ‘hidden-order’ (HO) transition of URu2Si2 remains a puzzle after 25 years of research. Using high-resolution angle-resolved photoemission spectroscopy (ARPES) we found that a hole-like band around Γ having its band maximum at E = −35 meV, and previously thought to be a bulk band of the system, is indeed a surface state not related to the HO phase transition. Here we present our detailed investigations to assign that state to a surface feature, and discuss on the possible origins of this surface band.  相似文献   

2.
Samples of Ni1−yZnyCu0.3Fe1.7O4; 0.0?y?0.6 were prepared by the solid state reaction method. X-ray investigations were carried out in order to assure the formation of the samples in single spinel phase. The analysis of X-ray data shows that the unit cell parameter increases with increasing Zn concentration and ascribed to the variation of the predicted cation distribution. Seebeck coefficient measurements were performed to know the type of charge carriers participating in the conduction mechanism. The magnetic susceptibility for the prepared samples was measured using Faradays method at different temperatures as a function of the magnetic field intensity. The magnetic parameters were calculated from the magnetic susceptibility data, in the temperature range (300–800 K) at three different magnetic field intensities of (1280, 1733 and 2160 Oe). The effective magnetic moment (μeff) showed that, the critical Zn content was y=0.2y=0.2.  相似文献   

3.
Ca0.54Sr0.34−1.5xEu0.08Smx(MoO4)y (WO4)1−y red phosphors were prepared by solid-state reaction using Na+ as a charge compensator for light-emitting diodes (LED). The effects of Na+ concentration, synthesis temperature, reaction time and Eu3+ concentration were studied for the properties of luminescence and crystal structure of red phosphors. The results show that the optimum reaction condition is 6%, 900 °C, 2 h and 8%. The photoluminescence spectra show that red phosphors are effectively excited at 616 nm by 292, 395 and 465 nm. The wavelengths of 465 nm nicely match the widely applied emission wavelengths of blue LED chips.  相似文献   

4.
The Zn1−xMgxO thin films were grown on Al2O3 substrate with various O2 flow rates by plasma-assisted molecular beam epitaxy (P-MBE). The growth conditions were optimized by the characterizations of morphology, structural and optical properties. The Mg content of the Zn1−xMgxO thin film increases monotonously with decreasing the oxygen flux. X-ray diffractometer (XRD) measurements show that all the thin films are preferred (0 0 2) orientated. By transmittance and absorption measurements, it was found that the band gap of the film decreases gradually with increasing oxygen flow rate. The surface morphology dependent on the oxygen flow rate was also studied by field emission scanning electron microscopy (FE-SEM). The surface roughness became significant with increasing oxygen flow rate, and the nanostructures were formed at the larger flow rate. The relationship between the morphology and the oxygen flow rate of Zn1−xMgxO films was discussed.  相似文献   

5.
Thin film binary alloys of InxSe1−x (0.05?x?0.30) have been prepared by the thermal evaporation technique. The optical transmission and reflection spectrum of these films were measured in the range 300-1100 nm. Both refractive index, n and extinction coefficient k have been determined from transmission and reflection measurements in terms of Murmann's equations. The dispersion of the refractive index is discussed in terms of the single-oscillator Wemple-DiDomenico model. The width of band tail is determined and the optical absorption edge is described using the ‘non-direct transition’ model proposed by Tauc. Finally, the relationship between the optical gap and chemical composition in InxSe1−x amorphous system is discussed in terms of the average heat of atomization Hs and average coordination number Nc. The results of these calculations can be used rationalize the observed optical properties of these materials. Finally, the chemical bond approach has been also applied to interpret the decrease of the glass optical gap with increasing In content.  相似文献   

6.
The equilibrium p(O2)-T-δ diagrams of perovskite-type La1 − xSrxCoO3 − δ (x = 0.3-0.7), collected at 873-1223 K in the oxygen partial pressure range 10− 5-1 atm by coulometric titration and thermogravimetric analysis, were analyzed in order to appraise the effects of the point-defect interactions. The nonstoichiometry variations were adequately described combining the rigid-band approach for delocalized holes and the pair-cluster formation reaction involving oxygen vacancies and Co2+ cations, whilst coulombic repulsion between the positively charged vacancies can be neglected. The resultant relationships between the oxygen chemical potential and mobile vacancy concentration were used for numerical regression analysis of the steady-state oxygen permeation through dense La1 − xSrxCoO3 − δ membranes, affected by the surface exchange kinetics when Sr2+ content is higher than 40-50%. The calculated ionic conductivity is strongly influenced by the defect association processes, and decreases with decreasing concentration of the mobile vacancies as clustering starts to prevail on reduction. The Mössbauer spectroscopy studies of La1 − xSrxCoO3 − δ, doped with 1 mol% 57Fe isotope and moderately reduced at p(O2) ≈ 105 atm, show no long-range vacancy ordering at x ≤ 0.5.  相似文献   

7.
Using periodic first principles simulations we investigate the interaction of oxygen molecules with both regular Al(111) and Al(001) surfaces as well as a stepped Al(111) substrate. The limitation of this approach is the use of thin metallic slabs with a limited range for their coverage by adsorbed oxygen. The advantage is the detailed modeling that is possible at an atomic level. On the regular Al(111) surface, we have been able to follow the oxidation process from the approach of O2 molecules to the surface, through the chemisorption and absorption of O atoms, up to the formation of first Al2O3 formula units. An energetically feasible mechanism for the formation of these Al2O3 ‘molecules’ is proposed but their aggregation to Al2O3 growth nuclei can only be surmised. On the Al(001) surface, absorption of oxygen atoms occurs more readily without any restrictions on the density of their surface overlayer, in agreement with the failure to observe a distinct chemisorption stage for O on Al(001) experimentally. The stepped Al(111) surface contains both {111} and {001} microfacets: the latter are obviously preferred for penetration of the oxygen adatoms into the subsurface space of the substrate. Before considering the O/Al interfaces the computational method is tested thoroughly by simulations on bulk Al and close-packed aluminum surfaces.  相似文献   

8.
The hydrogen permeation characteristics of alloy membranes based on Pd-coated V90Al10 alloy membrane have been investigated in the pressure range 1-3 atm under pure hydrogen and hydrogen-carbon dioxide gas mixture at 450 °C. Hydrogen permeation experiments have been confirmed that hydrogen flux was 21.1 ml/min/cm2 for a Pd-coated V90Al10 alloy membrane (thickness: 0.5 mm) using pure hydrogen as the feed gas. It has been found that Pd-coated V90Al10 alloy membranes exhibit good resistance to hydrogen embrittlement in pure hydrogen atmosphere. After different hydrogen permeation flux tests under different pressure condition in presence of hydrogen-carbon dioxide gas mixture, the characteristics of the Pd-coated V90Al10 alloy membranes were examined by ex-situ analysis techniques. The loss of cell performance observed in the presence of hydrogen-carbon dioxide gas mixture is mainly attributed to both physical and chemical degradations of membrane, which led to structural changes in the Pd-coated V90Al10 alloy membrane.  相似文献   

9.
Thermal stability, oxygen non-stoichiometry and electrical conductivity of LaNi0.6Fe0.4O3δ were investigated in the temperature region of 20-1000 °C in Ar/O2 gas flows at oxygen partial pressures between 0.5 and 21,000 Pa. Diffusion mobility was measured in Ar/O2 gas flow at pO2 = 18 Pa. Crystal structure of this compound was found to be stable at the mentioned experimental conditions. LaNi0.6Fe0.4O3δ is a p-type semiconductor with metallic type conductivity above 150 °C at the investigated pO2 range. Two different (fast and slow) oxygen exchange areas on the temperature-pO2 diagram were established, which are due to two different oxygen anion positions in the double B-site mixed perovskite structure. Oxygen non-stoichiometry in the fast oxygen exchange region reaches about 0.005 of oxygen atomic index. Chemical diffusion and oxygen surface exchange coefficients do not vary at 600-800 °C, but show visible increase above 800-850 °C.  相似文献   

10.
A pre-treatment technique was developed to facilitate the electroless deposition of Pd layers onto ZrO2-TiO2 ceramic membrane surfaces in the preparation of novel multi-functional porous membranes. Surface functionalization using an aqueous solution of γ-aminopropyltriethoxysilane (γ-APTES) aided the surface immobilization of the Pd activation particles and the subsequent electroless deposition of metal layers onto the hydroxyl-rich membrane surface. The attractiveness of γ-APTES functionalization, in the electroless deposition of metal layers, was thus demonstrated. Characterization techniques employed in the structural study of the surface-modified membranes included SEM, EDS, dynamic analysis in micro-PIXE, and XRD. Special membrane techniques such as electrokinetic analysis and single-gas permeation measurements were also used in the study of surface modification. These membranes were developed for application in tasks associated with the hydrogen economy.  相似文献   

11.
The six Painlevé transcendents PI − PVI have both applications and analytic properties that make them stand out from most other classes of special functions. Although they have been the subject of extensive theoretical investigations for about a century, they still have a reputation for being numerically challenging. In particular, their extensive pole fields in the complex plane have often been perceived as ‘numerical mine fields’. In the present work, we note that the Painlevé property in fact provides the opportunity for very fast and accurate numerical solutions throughout such fields. When combining a Taylor/Padé-based ODE initial value solver for the pole fields with a boundary value solver for smooth regions, numerical solutions become available across the full complex plane. We focus here on the numerical methodology, and illustrate it for the PI equation. In later studies, we will concentrate on mathematical aspects of both the PI and the higher Painlevé transcendents.  相似文献   

12.
We studied the interaction between tri-methylaluminum (Al(CH3)3, TMA) molecules and their effect on TMA reactions with a fully OH-terminated Si (0 0 1) surface for initial aluminum oxide thin-film growth using density functional theory. The reaction between an adsorbed TMA and the surface produced a di-methylaluminum (-Al(CH3)2, DMA) group, and further reaction to a uni-methylaluminum (-AlCH3, UMA) group with energy barriers of 0.50 and 0.21 eV, respectively. A second TMA adsorbed near the already adsorbed TMA, DMA, or UMA group showed higher energy barriers (0.68-1.01 eV) for its reaction to produce a DMA group due to the interaction between them. Therefore, the fully OH-terminated Si (0 0 1) surface would be covered by the mixture of the adsorbed TMA and UMA groups at an intermediate surface temperature.  相似文献   

13.
Oxygen nonstoichiometry (δ), total conductivity (σ) and thermoelectric power (S) of the LaFe0.7Ni0.3O3 − δ sample have been studied as functions of temperature and oxygen partial pressure. Based on the results of the direct reduction of the sample in hydrogen flow at 1100 °C the absolute oxygen content (3 − δ) has been found to vary from 2.999 to 2.974 in the range of 1273-1373 K and 10− 3-0.21 atm. The point defect equilibrium models have been proposed and fitted to the set of experimental data in the form of log p(O2) = f(δ)T dependences. The values of standard thermodynamic quantities of defect formation reactions have been assessed. The joint analysis of oxygen nonstoichiometry, total conductivity and thermoelectric power has been performed using a small-polaron approach. The values of partial conductivity, partial thermopower and mobilities of electronic charge carriers have been calculated. The p-type semiconducting behavior of LaFe0.7Ni0.3O3 − δ has been explained by the higher mobility values of electron holes than those of electrons in the whole range of thermodynamic parameters studied.  相似文献   

14.
《Solid State Ionics》2006,177(5-6):595-600
Oxygen permeation fluxes across the dense Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCFO) membrane disks were measured under an air/helium oxygen partial pressure gradient at high pressures (up to 10 atm) and various temperatures (973–1123 K). The fabricated BSCFO membrane exhibited good oxygen permeability with a high oxygen permeation flux of 2.01 ml min 1cm 2 (thickness: 1.37 mm) at 1123 K and 10 atm. Oxygen permeation results were analyzed theoretically using the surface exchange current model. The dependences of the oxygen permeation fluxes on the oxygen partial pressure gradient, suggested that the bulk oxygen ionic diffusion was the rate-limiting step for the overall oxygen permeation process across the BSCFO membrane. The ambipolar diffusion coefficients (Da), the oxygen vacancy diffusion coefficients (Dv) and the oxygen ionic conductivities (σi) of the BSCFO material at different temperatures (973–1123 K) were calculated. It was found that BSCFO possessed high oxygen diffusion coefficients and ionic conductivities, which resulted in the good oxygen permeability of BSCFO. In addition, the BSCFO membrane exhibited good stability of oxygen permeation at 1123 K, while the deterioration of oxygen permeation stability was observed at 1098 K due to structural changes occurring at the surface of the BSCFO membrane disk as demonstrated by XRD.  相似文献   

15.
Nominal composition of (ZnO)1−x(MnO2)x (0.005≤x≤0.2) ceramics have been prepared by the standard solid-state reaction method in three different sintering atmospheres: Ar, air, and reductive atmosphere. The effect of sintering atmosphere on the electron spin resonance (ESR), negative temperature coefficient of resistivity (NTCR), and photoluminescence (PL) properties of (ZnO)1−x(MnO2)x ceramics has been investigated in detail. The results demonstrate that the sintering atmosphere has significant effects on the ESR signals of (ZnO)1−x(MnO2)x; the NTCR of the samples sintered in air is larger than those sintering in Ar and reductive atmosphere; the deep-level PL related to oxygen vacancy increases when sintered in the reductive atmosphere.  相似文献   

16.
WOx films were prepared by reactive dc magnetron sputtering using tungsten target. Sputtering was carried out at a total pressure of 1.2 Pa using a mixture of argon plus oxygen in an effort to determine the influence of the oxygen partial pressure on structural and optical properties of the films. The deposition rate decreases significantly as the surface of the target is oxidized. X-Ray diffraction revealed the amorphous nature of all the films prepared at oxygen partial pressures higher than 1.71×10−3 Pa. For higher oxygen partial pressures, fully transparent films were deposited, which showed a slight increase in optical band gap with increasing oxygen partial pressure, while the refractive index was simultaneously decreased.  相似文献   

17.
A series of PdxNi100−x nanoparticles were prepared by the co-precipitation method and analyzed using a temperature-programmed surface reaction (TPSR) of their methanation reactions. ESCA measurement suggested that the as-prepared Pd-Ni alloys had Pd-core/Ni-shell structure. Surface Pd segregation occurred during H2 reduction and resulted in a surface composition close to the nominal value. The TPSR experiments were performed by pre-adsorption of CO with H2 to form methane. The peak temperature of methanation increased as Pd content increased, indicating that a methanation reaction is favored on Ni and Ni-rich alloy nanoparticles. For physical mixtures of Pd and Ni nanoparticles, methanation behaviors is similar to those of alloy nanoparticles; but the methanation temperatures of physical mixtures are always higher than those of alloy nanoparticles. This may be due to the formation of a Pd-enriched alloy surface layer during reduction in H2 at 400 °C, or because the CO molecules adsorbed on the Pd sites spill over onto the Ni sites for methanation. Using TPSR technique and measuring methanation temperature, the top-most surface of such bimetallic nanoparticles can be probed.  相似文献   

18.
A series of Ce1−xCuxO2 nanocomposite catalysts with various copper contents were synthesized by a simple hydrothermal method at low temperature without any surfactants, using mixed solutions of Cu(II) and Ce(III) nitrates as metal sources. These bimetal oxide nanocomposites were characterized by means of XRD, TEM, HRTEM, EDS, N2 adsorption, H2-TPR and XPS. The influence of Cu loading (5-25 mol%) and calcination temperature on the surface area, particle size and catalytic behavior of the nanocomposites have been discussed. The catalytic activity of Ce1−xCuxO2 nanocomposites was investigated using the test of CO oxidation reaction. The optimized performance was achieved for the Ce0.80Cu0.20O2 nanocomposite catalyst, which exhibited superior reaction rate of 11.2 × 10−4 mmol g−1 s−1 and high turnover frequency of 7.53 × 10−2 s−1 (1% CO balanced with air at a rate of 40 mL min−1, at 90 °C). No obvious deactivation was observed after six times of catalytic reactions for Ce0.80Cu0.20O2 nanocomposite catalyst.  相似文献   

19.
The spectrum of the ν7 band of cis-ethylene-d2 (cis-C2H2D2) has been recorded with an unapodized resolution of 0.0063 cm−1 in the 740-950 cm−1 region using a Bruker IFS 125 HR Fourier transform infrared spectrometer. By fitting 2186 infrared transitions of ν7 with a standard deviation of 0.00060 cm−1 using a Watson’s A-reduced Hamiltonian in the Ir representation, accurate rovibrational constants for ν7 = 1 state have been derived. The band center of ν7 has been found to be 842.20957 ± 0.00004 cm−1. In a simultaneous fit of 1331 infrared ground state combination differences from the present ν7 transitions, together with 22 microwave frequencies, ground state constants have been improved. The rms deviation of the ground state fit was 0.00027 cm−1.  相似文献   

20.
The promotion of sulfur oxides on the selective catalytic reduction (SCR) of NO by hydrocarbons in the presence of a low concentration of sulfur oxides over Ag/Al2O3 has been investigated by a flow reaction test and in situ infrared spectroscopy. When the C3H6 (or C10H22) + NO + O2 feed-flow reaction was tested, maximum NO reduction was below 30% over fresh Ag/Al2O3. After the addition of SO2 to the feed flow, conversion increased slightly. Conversion increased further after SO2 was cut-off from the feed flow. This demonstrated that the increase in NO reduction activity of the catalyst was related to SOx adsorbed on the catalyst. SOx adsorbed on the catalytic surface (1375 cm−1) was detected by IR spectroscopy and was stable within the temperature range. NCO species, as an intermediate in NO reduction, on SOx-adsorbed Ag/Al2O3 in a C3H6 + NO + O2 feed flow was observed in in situ IR spectra during the elevation of the reaction temperature from 473 to 673 K, while it was only observed at 673 K on fresh Ag/Al2O3 under the same experimental conditions. We suggest that SOx in low concentrations depressed the combustion of reductants by contaminating hydrocarbon combustion active sites on the catalyst, resulting in an increase in NO reduction efficiency of the reductants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号