首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of Raman and anti-stokes Raman spectroscopy to investigate the effect of exposure to high power laser radiation on the crystalline phases of TiO2 has been investigated. Measurement of the changes, over several time integrals, in the Raman and anti-stokes Raman of TiO2 spectra with exposure to laser radiation is reported. Raman and anti-stokes Raman provide detail on both the structure and the kinetic process of changes in crystalline phases in the titania material. The effect of laser exposure resulted in the generation of increasing amounts of the rutile crystalline phase from the anatase crystalline phase during exposure. The Raman spectra displayed bands at 144 cm−1 (A1g), 197 cm−1 (Eg), 398 cm−1 (B1g), 515 cm−1 (A1g), and 640 cm−1 (Eg) assigned to anatase which were replaced by bands at 143 cm−1 (B1g), 235 cm−1 (2 phonon process), 448 cm−1 (Eg) and 612 cm−1 (A1g) which were assigned to rutile. This indicated that laser irradiation of TiO2 changes the crystalline phase from anatase to rutile. Raman and anti-stokes Raman are highly sensitive to the crystalline forms of TiO2 and allow characterisation of the effect of laser irradiation upon TiO2. This technique would also be applicable as an in situ method for monitoring changes during the laser irradiation process.  相似文献   

2.
A quantum modeling of the CO adsorption on illuminated anatase TiO2 (0 0 1) is presented. The calculated adsorption energy and geometries of illuminated case are compared with the ground state case. The calculations were achieved by using DFT formalism and the BH and HLYP. Upon photoexcitation, an electron-hole pair is generated. Comparing of natural population in the ground state and the exited state, shows that an electron is trapped in a Ti4+ ion and a hole is localized in an oxygen ion. The photoelectron helps generation of a CO2 molecule on the TiO2 surface. As shown by optimization of these systems, the CO molecule adsorbed vertically on the TiO2 (0 0 1) surface in the ground state case while the CO molecule made an angle of 134.3° to this surface at the excited state case. Based on the here used model the obtained adsorption energy was 0.36 eV which is in excellent agreement with the reported experimental value. In the present work the C-O stretch IR frequencies are calculated which are 1366.53 and 1423.16 cm−1. These results are in good agreement with the earlier reported works for the surface carbonaceous compounds, and oxygenated carbon species.  相似文献   

3.
T. Okazawa  Y. Kido 《Surface science》2006,600(19):4430-4437
Growth modes and electronic properties were analyzed for Au nano-particles grown on stoichiometric and reduced TiO2(1 1 0) substrates by medium energy ion scattering (MEIS) and photoelectron spectroscopy(PES) using synchrotron-radiation-light. Initially, two-dimensional islands (2D) with a height of one and two atomic layers grow and higher coverage increases the islands height to form three-dimensional (3D) islands for the stoichiometric TiO2(1 1 0) substrate. In contrast, 3D islands start to grow from initial stage with a small Au coverage (?0.1 ML, 1 ML = 1.39 × 1015  atoms/cm2: Au(1 1 1)) probably due to O-vacancies acting as a nucleation site. Above 0.7 ML, all the islands become 3D ones taking a shape of a partial sphere and the Au clusters change to metal for both substrates. We observed the Au 4f and Ti 3p core level shifts together with the valence band spectra. The Ti 3p peak for the O-deficient surface shifts to higher binding energy by 0.25 ± 0.05 eV compared to that for the stoichiometric surface, indicating downward band bending by an electron charge transfer from an O-vacancy induced surface state band to n-type TiO2 substrate. Higher binding energy shifts of Au 4f peaks observed for both substrates reveal an electron charge transfer from Au to TiO2 substrates. The work functions of Au nano-particles supported on the stoichiometric and reduced TiO2 substrates were also determined as a function of Au coverage and explained clearly by the above surface and interface dipoles.  相似文献   

4.
The electronic and geometric structures of the cluster consisting of 3-aminophenol (3AP) and one ammonia molecule were investigated using resonance-enhanced multiphoton ionization and IR-UV double resonance spectroscopy in the gas phase. Between the cis and trans isomers found for the bare 3AP molecule, only trans isomer was found for 3AP·(NH3)1. It was found that complete quenching of the excited state of cis isomer, e.g. by conformer-specific excited state hydrogen transfer reaction, does not seem to occur, but that efficient conformational cooling drives the ground state population into the most stable trans isomer. The 0-0 band of the trans-3AP·(NH3)1 at 34 409 cm−1 is red-shifted by 68 cm−1 from that of the trans-3AP at 34 477 cm−1. The IR depletion spectrum shows that the OH stretching vibration (3296 cm−1) is red-shifted by 362 cm−1 from that of the bare molecule. The large red-shift in OH frequency, combined with MP2 calculation, reveals that the structure of the cluster is the one with the nitrogen atom of ammonia bound to the hydroxyl hydrogen of aminophenol.  相似文献   

5.
Rotationally selected infrared spectra of jet-cooled CH3OD have been recorded and analyzed in the OD-stretch region (2710-2736 cm−1). The observed spectra are obtained by monitoring three E-species microwave transitions (1−1 ← 10 at 18.957 GHz, 2−1 ← 20 at 18.991 GHz, and 3−1 ← 30 at 19.005 GHz) in a narrowband cavity Fourier transform microwave spectrometer, using the background-free coherence-converted population transfer technique. Of the four upper state subbands observed, two (K′ = 0 and −2) are split by perturbations. The E-species deperturbed band origin is at 2718.1 cm−1. The deperturbed reduced term values follow a pattern similar to the ground state. This allows the J′ = 0 torsional tunneling splitting to be estimated as 2.1 cm−1, which can be compared to 2.6 cm−1 in the ground state.  相似文献   

6.
7.
The emission spectrum of NbN has been reinvestigated in the 8000-35 000  cm−1 region using a Fourier transform spectrometer and two groups of new bands were observed. The bands observed in the 18 000-20 000 cm−1 region have been assigned to a new 3Π-X3Δ transition. Three bands with R heads near 19 463.8, 19 659.0 and 19 757.0 cm−1 have been assigned as 0-0 bands of the 3Π2-X3Δ3, 3Π1-X3Δ2 and 3Π-X3Δ1 subbands, respectively, of this new transition. Three additional ΔΩ = 0 bands have been observed in the 24 000-26 000  cm−1 region. A 0-0 band with an R head near 25 409.9 cm−1 has been assigned as a ΔΩ = 0 transition having X3Δ2 as its lower state while two additional bands with heads near 25 518.7 and 25 534.8 cm−1 were found to be ΔΩ = 0 bands having X3Δ1 as the common lower state. Two of these three bands are perhaps subbands of a 3Δ-X3Δ transition. Most of the excited levels are affected by perturbations.  相似文献   

8.
Rotationally resolved vibrational spectra of the three lowest frequency bands of the four-membered heterocycle azetidine (c-C3H6NH) have been collected with a resolution of 0.00096 cm−1 using the far infrared beamline at the Canadian Light Source synchrotron. The modes observed correspond principally to motions best described as: β-CH2 rock (ν14) at 736.701310(7) cm−1, ring deformation (ν15) at 648.116041(8) cm−1, and the ring puckering mode (ν16) at 207.727053(9) cm−1. A global fit of 14 276 rovibrational transitions from the three bands provided an accurate set of ground state spectroscopic constants as well as excited state parameters for each of the three vibrational modes. The ground state structure was determined to be that of the puckered conformer having the NH bond in an equatorial arrangement.  相似文献   

9.
The temperature dependence of the Raman modes in anatase TiO2 nanocrystals has been investigated over the temperature range 77-873 K. With increasing temperature, the frequency of the Eg mode at 639 cm−1 shifts sublinearly to the lower frequencies, however, the frequency of the lowest-frequency Eg mode shifts sublinearly to the higher frequencies from 138 cm−1 at 77 K to 152 cm−1 at 873 K and the frequency of the B1g mode at 397 cm−1 increases firstly and attains a maximum near 350 K. The linewidth of all of the three modes increases linearly with increasing temperature. The anharmonic effects contribute a lot to the temperature dependence behavior of the frequency and linewidth of Raman modes in anatase TiO2 nanocrystals.  相似文献   

10.
We report experimental rate coefficients for the energy-pooling collisions Cs(5D) + Cs(5D) → Cs(6S) + Cs(nl = 9D, 11S, 7F). In the experiment the Cs(5D) state was populated via photodissociation of Cs2 molecules using an argon-ion laser at wavelength 488.0 nm. We also consider the competing process 6P1/2 + 7S → 6S + (nl = 9D, 11S, 7F) that might also populate 9D, 11S and 7F. An intermodulation technique was used to select the fluorescence contributions due only to the process 6P1/2 + 7S → 6S + (nl = 9D, 11S, 7F). The excited atom (nlJ) density and spatial distribution were mapped by monitoring the absorption of a counterpropagating probe laser beam tuned to various transitions. The measured excited atom densities are combined with measured fluorescence ratios to yield rate coefficients for the energy-pooling collisions Cs(5D) + Cs(5D) → Cs(6S) + Cs(nl = 9D, 11S, 7F). The rate coefficients for nl = 9D, 11S, 7F are (4.1 ± 2.0) × 10−10 cm3 s−1, (1.6 ± 0.8) × 10−10 cm3 s−1 and (3.6 ± 1.8) × 10−10 cm3 s−1, respectively. The contributions to the rate coefficients from other energy transfer processes are also discussed.  相似文献   

11.
The growth mode and electronic structure of Au nano-clusters grown on NiO and TiO2 were analyzed by reflection high-energy electron diffraction, a field-emission type scanning electron microscope, medium energy ion scattering and photoelectron spectroscopy. Au was deposited on clean NiO(0 0 1)-1 × 1 and TiO2(1 1 0)-1 × 1 surfaces at room temperature with a Knudsen cell at a rate of 0.25-0.35 ML/min (1 ML = 1.39 × 1015 atoms/cm2:Au(1 1 1)). Initially two-dimensional (2D) islands with thickness of one Au-atom layer grow epitaxially on NiO(0 0 1) and then neighboring 2D-islands link each other to form three-dimensional (3D)-islands with the c-axis oriented to the [1 1 1] direction. The critical size to form 3D-islands is estimated to be about 5 nm2. The shape of the 3D-islands is well approximated by a partial sphere with a diameter d and height h ranging from 2.0 to 11.8 nm and from 0.95 to 4.2 nm, respectively for Au coverage from 0.13 to 4.6 ML. The valence band spectra show that the Au/NiO and Au/TiO2 surfaces have metallic characters for Au coverage above 0.9 ML. We observed Au 4f spectra and found no binding energy shift for Au/NiO but significant higher binding energy shifts for Au/TiO2 due to an electron charge transfer from Au to TiO2. The work function of Au/NiO(0 0 1) gradually increases with increase in Au coverage from 4.4 eV (NiO(0 0 1)) to 5.36 eV (Au(1 1 1)). In contrast, a small Au deposition(0.15 to 1.5 ML) on TiO2(1 1 0) leads to reduction of the work function, which is correlated with an electron charge transfer from Au to TiO2 substrate.  相似文献   

12.
The absorption spectrum of the ν6 band of C2H3D centered near 1125.27674 cm−1 in the 1100-1250 cm−1 region was recorded with an unapodized resolution of 0.0063 cm−1 using a Fourier transform infrared (FTIR) spectrometer. A total of 947 infrared transitions of the A-B hybrid-type band were assigned and fitted to upper-state (ν6 = 1) rovibrational constants using a Watson’s A-reduced Hamiltonian in the Ir representation up to eighth-order centrifugal distortion terms. The b-type infrared transitions of the band were analyzed for the first time. The root-mean-square deviation of the fit was 0.00062 cm−1. The ground-state rovibrational constants up to eighth-order terms were also obtained by a fit of 617 combination differences from the present infrared measurements, simultaneously with 21 microwave frequencies with a root-mean-square deviation of 0.00055 cm−1. From this work, the upper-state (ν6 = 1) and ground-state constants of C2H3D were derived with the highest accuracy, so far. The a- and b-type transitions of the hybrid ν6 band were found to be relatively free from local frequency perturbations. The ratio of the a- to b-type vibrational dipole transition moments (μa/μb) was found to be 1.05 ± 0.10. From the ν6 = 1 rovibrational constants obtained, the inertial defect Δ6 was calculated to be 0.3570 ± 0.0008 μÅ2.  相似文献   

13.
14.
The ESR spectrum of Mn2+ doped potassium hydrogen sulphate at liquid nitrogen temperature (77 K) has been analyzed and site of entered Mn2+ in the lattice has been discussed. The values of the zero field parameters that give good fit to the observed ESR spectra have been obtained. The obtained g, A, B, D, E and a values are 2.0002, 66×10−4 cm−1, 26×10−4 cm−1, 59×10−4 cm−1, 32×10−4 cm−1 and −8×10−4 cm−1, respectively. The percentage of covalency of the metal-ligand bond has also been estimated. From the optical absorption study at room temperature, the distortion has been suggested. The observed bands are assigned as transitions from the 6A1g(S) ground state to various excited quartet levels of Mn2+ ion in a cubic crystalline field. The electron repulsion and crystal field parameters B, C, Dq and α providing good fit to the observed optical spectra have been evaluated and the values obtained for the parameters are B=627 cm−1, C=2580 cm−1 , Dq=790 cm−1 and α=76 cm−1.  相似文献   

15.
The Fourier transform infrared (FTIR) spectrum of the ν3 band of C2H3D was measured at an unapodized resolution of 0.0063 cm−1 in the 1240-1340 cm−1 region. Rovibrational constants for the upper state (ν3 = 1) up to five quartic and two sextic centrifugal distortion terms had been obtained by assigning and fitting a total of 1037 infrared transitions using a Watson’s A-reduced Hamiltonian in the Ir representation. The root-mean-square deviation of the fit was 0.00051 cm−1. The ground state rovibrational constants were also determined by a fit of 674 combination differences together with 21 microwave frequencies from the present infrared measurements with a root-mean-square deviation of 0.00040 cm−1. The upper state (ν3 = 1) and ground state rovibrational constants of C2H3D represent the most accurate values obtained so far. The A-type ν3 band, centred at 1288.788826 ± 0.000044 cm−1 was found to be relatively free from local frequency perturbations. From the ν3 = 1 rovibrational constants obtained, the inertial defect Δ3 was 0.1619724 ± 0.0000001 μÅ2.  相似文献   

16.
The 2,3-13C2 isotopomer of butadiene was synthesized, and its fundamental vibrational fundamentals were assigned from a study of its infrared and Raman spectra aided with quantum chemical predictions of frequencies, intensities, and Raman depolarization ratios. For two C-type bands in the high-resolution (0.002 cm−1) infrared spectrum, the rotational structure was analyzed. These bands are for ν11 (au) at 907.17 cm−1 and for ν12 (au) at 523.37 cm−1. Ground state and upper state rotational constants were fitted to Watson-type Hamiltonians with a full quartic set of centrifugal distortion constants and two sextic ones. For the ground state, A0 = 1.3545088(7) cm−1, B0 = 0.1469404(1) cm−1, and C0 = 0.1325838(2)  cm−1. The small inertial defects of butadiene and two 13C2 isotopomers, as well as for five deuterium isotopomers as previously reported, confirm the planarity of the s-trans rotamer of butadiene.  相似文献   

17.
Eight emission spectra of pure N2O and N2O + N2 + He mixtures excited by a radio frequency discharge were recorded by Fourier Transform Spectroscopy at a resolution of 0.005 and 0.004 cm−1 in the 4.5 μm region. Results (wavenumbers, band centers, and spectroscopic constants) concerning nine new vibrational transitions which have not been observed before, and which occur between highly excited levels of the bending mode are reported. The derived spectroscopic parameters allow us to reproduce the experimental wavenumbers with an RMS error lower than 4.5 × 10−4 cm−1.  相似文献   

18.
The ab initio multireference single- and double-excitation configuration interaction (MRD-CI) method has been used to calculate the potential surfaces for the six lowest-lying electronic states of the TeOH molecule. The 2A″ ground state is predicted to have a bent equilibrium geometry. The first excited state, 2A′, is calculated to lie 2695 cm−1 above the ground state. The MORBID program package has been used for the rotation-vibration analysis of the electronic ground state, for which the term values of the fundamental levels are calculated as 582 cm−1 for the Te-O stretching mode, 959 cm−1 for the bending mode, and 3655 cm−1 for the O-H stretching mode.  相似文献   

19.
The high resolution absorption spectrum of dideuterated water, D2O, has been recorded by Intracavity Laser Absorption Spectroscopy (ICLAS) in the 12 850-13 380 cm−1 spectral region which is the higher energy region reported so far for this water isotopologue. Very high deuterium enrichment was necessary to minimize the HDO absorption lines overlapping the D2O spectrum. The achieved sensitivity (noise equivalent absorption αmin ∼ 10−9 cm−1) allowed detecting transitions with line strengths on the order of 5 × 10−28 cm/molecule. The spectrum analysis, based on recent variational calculations has provided a set of 422 new rovibrational energy levels belonging to 11 vibrational states, including rotational sublevels for four new vibrational states and one level of the (0 9 1) highly excited bending state. The very weak (1 0 4)-(0 0 0) band at 13 263.902 cm−1, which is the highest D216O band currently observed, could be assigned despite the fact that the HDO absorption in the region is stronger by three orders of magnitude. The list of 996 D216O transitions is provided as Supplementary Material.  相似文献   

20.
The rovibrational spectrum of the Ne-N2O van der Waals complex has been recorded in the symmetric stretching mode region of the N2O monomer (∼1285 cm−1) using a tunable diode laser spectrometer in conjunction with an astigmatic multi-pass cell and a pulsed supersonic slit jet. The spectra of both 20Ne-N2O and 22Ne-N2O isotopomers are assigned and analyzed using a Watson S-reduced asymmetric-rotor Hamiltonian. The rotational and centrifugal constants for the excited vibrational state are accurately determined. The band-origin of the spectrum is determined to be ν0 = 1285.12251(18) cm−1 for 20Ne-N2O and 1285.12363(27) cm−1 for 22Ne-N2O, which shows a blue-shift of 0.21921 cm−1 for 20Ne-N2O and 0.22033 cm−1 for 22Ne-N2O from that of the N2O monomer, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号