首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Based on large amount of experimental observations, the effects of metal reactivity and oxide films at particle surfaces on coating deposition behavior in cold spraying were presented and discussed. The oxygen contents in as-sprayed Ti, Ti-6Al-4V and Al coatings were higher than those in the corresponding starting powders. The obvious flashing jets outside nozzle exit during deposition of Ti and Ti-6Al-4V were caused by the reaction of the particles with oxygen in the entrained or the adopted air. For Ti and Ti-6Al-4V coatings, their porous structures are predominantly attributed to the surface reactivity (defined as reactivity with oxygen). This surface reaction could be helpful for formation of a metallurgical bonding between the deposited particles. For Al, even though it is more reactive than Ti, the oxide films at Al particle surfaces suppress the surface activity.  相似文献   

2.
The ability of cold spray process to retain the feedstock microstructure into coating makes it possible to deposit nanostructured WC-Co coatings. In the present study, the deposition behavior of nanostructured WC-12Co coating was examined through the surface morphology and cross-sectional structure of the deposited single WC-12Co particle impacting on the substrates with different hardness using a nanostructured WC-12Co powder. Substrates included stainless steel, nickel-based self-fluxing alloy coatings with different hardness. It was observed from the top surface and cross-section of individual WC-12Co particles that the penetration leading to particle deposition depends on substrate hardness. When the substrate surface is covered by WC-12Co particles, the hardness of the newly formed substrate, i.e. the coating, increases greatly. The significant increase of the surface hardness leads to the rebounding off of impacting particles and erosion of the deposited particles, which prohibits effective built-up of coating. However, it was found that with spray jet fixed, a deposit with a thickness up to over 700 μm can be built-up. A model involving in substrate hardness transition during deposition is proposed to explain such phenomenon, which can be employed to optimize the conditions to build up a uniform nanostructured WC-12Co coating.  相似文献   

3.
Zn particles are employed to create different impact conditions, including impact-induced interface melting in cold spraying. The influence of particle impact conditions on the interfacial microstructure evolution, microhardness and the bonding of particles in cold-sprayed Zn coatings are studied. An examination of coating surface morphology provides convincing evidence for melting at particle interfaces. The results reveal that the nanostructured phase was formed at the interface areas between deposited particles in coating resulting from the recrystallization of deformed grains. Melting at interfaces significantly enhances the bonding between the substrate and the coating and between the deposited Zn particles in the coating through the formation of a metallurgical bond. In addition, high driving gas temperature causes the decreasing hardness of deposited Zn coatings. The effects of particle conditions on the impact-induced melting and bonding mechanisms are discussed.  相似文献   

4.
In this study, a comprehensive examination of the deformation behavior of Al particles impacting on Al substrate was conducted by using the Arbitrary Lagrangian Eulerian (ALE) method to clarify the deposition characteristics of Al powder and the effect of surface oxide films in cold spraying. It was found that the deformation behavior of Al particles is different from that of Cu particles under the same impact conditions owing to its lower density and thus less kinetic energy upon impact. The results indicated that a higher velocity was required for Al particles to reach the same compression ratio as that of Cu particles. On the other hand, the numerical results showed that the oxide films at particle surfaces influenced the deformation and bonding condition between the particle and substrate. The inclusions of the crushed oxide films at the interfaces between the depostied particles inhibit the deformation.  相似文献   

5.
The formation of zinc phosphate (ZPO) coatings on 2024-T3 aluminum alloy was studied using scanning electron microscopy (SEM), scanning Auger microscopy (SAM) and X-ray photoelectron spectroscopy (XPS), with an emphasis on microstructural effects involving second-phase particles and the alloy matrix. Surface polishing results in an Al-Cu-Mg particle surface that contains metallic Cu as well as an overlayer of aluminum and magnesium oxide, while larger amounts of aluminum oxide are present on the Al-Cu-Fe-Mn particle and matrix. When dipped in an acidic ZPO coating solution, the oxide covering the Al-Cu-Mg particle is etched most easily, and metallic Cu near the surface makes that region most cathodic, allowing more coating deposition compared with the other regions. The oxides on the Al-Cu-Fe-Mn and matrix regions are similar, thereby confirming that the observed differences in ZPO coating characteristics at these two regions arise from their underlying electrochemical characteristics. Immersion of a coated 2024-Al sample in corrosive NaCl solution for extended periods indicates that the ZPO provides better protection to the second-phase particles than to the matrix.  相似文献   

6.
This experimental study investigated the influences of two different powder systems (coarse and ultrafine) on particle charging and deposition characteristics during electrostatic powder coating processes. Results disclosed that, despite their differences in particle sizes, the two powders behave similarly in deposition process, commonly resulting in a cone-shaped deposited pattern in the inner portion of the substrate and an increase of deposited particles in the fringe region. However, their different properties lead to the discrepancies in their deposition efficiencies, which account for a higher efficiency with the coarse powder. The study further revealed that the coarse powder is superior to the ultrafine powder in charging in-flight particles, which directly contributes to its higher deposition efficiencies. Furthermore, it was disclosed that the two powders exhibit distinct characteristics in charging deposited particles. Compared to the coarse powder, the ultrafine powder is more uniform in charging deposited particles, mainly owing to its greater particle number and higher specific surface area but less mass. In particular, the charging efficiency of overall deposited particles decreases for the ultrafine powder but increases for the coarse powder with increased charging voltage, closely related to their particle properties. However, both powders decrease in charging efficiency of deposited particles with extended spraying duration due to back corona intensifying with spraying.  相似文献   

7.
李新连  吴平  邱宏  陈森  宋斌斌 《物理学报》2011,60(3):36805-036805
用中频脉冲反应磁控溅射法,在溅射功率为78 W,93 W和124 W以及衬底温度分别为室温,500 ℃及677 ℃下制备了氧化铒涂层.采用原子力显微镜、纳米压痕、X射线衍射和掠入射X射线衍射法研究了涂层的形貌、力学性能及物相结构.测量了涂层的电学性能.结果显示,脉冲磁控溅射沉积氧化铒涂层具有较高的沉积速率.实验制备得到了单斜相结构的氧化铒涂层.提高溅射功率时,沉积速率从28 nm/min增大至68 nm/min,涂层的结晶质量显著下降.提高衬底温度至500 ℃和677 ℃时,单斜相衍射峰强度下降.分析认为 关键词: 氧化铒 脉冲磁控溅射 单斜晶相  相似文献   

8.
SiC reinforced copper composite coatings were prepared by electro-brush plating with micron-size silicon carbide (SiC) ranging from 1 to 5 μm on pure copper sheet in this paper. The micro-structural characterizations of SiC/Cu composite coatings were performed by optical microscope and Scanning Electron Microscope (SEM) coupled with spectrometer, to study co-deposition mechanism of SiC/Cu. It was found that there were three different patterns of SiC deposition in plating layers during electro-brush plating process, i.e. the particles could deposit inside copper grains, in grain boundaries, or in holes of the surface. To investigate deposition mechanism of each pattern, size of SiC and copper grains was compared. By comparison of size of copper grains and hard particles, SiC were either wrapped in copper grains or deposited in grain boundaries. Moreover, electro-brush plating layers at different brush velocities and current densities were obtained respectively, to analyze the microstructure evolution of the composite coatings. The hardness of plating layers was measured. The results indicated at the current density of 3 A/dm2, the SiC/Cu coating was compact with SiC content at a high level and the hardness reached a maximum.  相似文献   

9.
Cerium based conversion coatings were spray deposited on Al 2024-T3 and characterized to determine the effect of surface preparation on the deposition rate and surface morphology. It was found that activation of the panel using a 1-wt.% sulfuric acid solution increased the coating deposition rate compared to alkaline cleaning alone. Analysis of the surface morphology of the coatings showed that the coatings deposited on the acid treated panels exhibited fewer visible cracks compared to coatings on alkaline cleaned panels. Auger electron spectroscopy depth profiling showed that the acid activation decreased the thickness of the aluminum oxide layer and the concentration of magnesium on the surface of the panels compared to the alkaline treatment. Additionally, acid activation increased the copper concentration at the surface of the aluminum substrate. Based on the results, the acid based surface treatment appeared to expose copper rich intermetallics, thus increasing the number of cathodic sites on the surface, which led to an overall increase in the deposition rate.  相似文献   

10.
This paper deals with the impact melting phenomenon at the interfaces between the deposited particles in cold-sprayed coatings and its effect on coating microstructure and particle bonding mechanism. Al-12Si, Al2319, Ti, Ti-6Al-4V, Ni and NiCoCrAlTaY powders were selected as feedstocks, which have various thermal and mechanical properties. The analytical results showed that most of the used materials possibly experienced the local melting at the contact interfaces of particles under certain impact conditions. Low melting point, relatively high gas temperature and chemical reaction with the atmosphere are the main factors contributing to the impact fusion during cold spraying. The results also indicated that the local melting would benefit the formation of a metallurgical bonding between the deposited particles and enhance the coating cohesion.  相似文献   

11.
Dry-ice blasting, as an environmental-friendly method, was introduced into atmospheric plasma spraying for improving properties of metallic, alloy and ceramic coatings. The deposited coatings were then compared with coatings plasma-sprayed using conventional air cooling in terms of microstructure, temperature, oxidation, porosity, residual stress and adhesion. It was found that a denser steel or CoNiCrAlY alloy coating with a lower content of oxide can be achieved with the application of dry-ice blasting during the plasma spraying. In addition, the adhesive strength of Al2O3 coating deposited with dry-ice blasting exceeded 60 MPa, which was nearly increased by 30% compared with that of the coating deposited with conventional air cooling. The improvement in properties of plasma-sprayed metallic, alloy and ceramic coatings caused by dry-ice blasting was attributed to the decrease of annulus-ringed disk like splats, the better cooling efficiency of dry-ice pellets and even the mechanical effect of dry-ice impact.  相似文献   

12.
Biofunctional coatings are necessary to improve integration of titanium implants in the host tissue but they may be detrimental for the implant fatigue properties. This study presents an attempt towards enhancement of the in vitro fatigue strength of plasma electrolytic oxidation coated Ti6Al4V alloy by applying shot peening process prior to coating. The electrolytic oxidation was performed in calcium acetate and calcium glycerophosphate electrolytes that allowed formation of porous oxide coatings with high surface free energy and apatite like ability. A deformed surface layer coupled with induced residual compressive stresses seem to affect oxide growth rate and fatigue behavior of the titanium alloy.  相似文献   

13.
张小锋  葛昌纯  李玉杰  郭双全  刘维良 《物理学报》2012,61(2):20207-020207
采用冷动力喷涂法以纯钨和钨-镍-铁合金为原料在铜合金基体上制备了钨涂层和钨-镍-铁涂层. 研究了冷喷涂过程中钨粉粒径、喷涂距离等因素对涂层性能的影响. 用扫描电子显微镜分析了涂层的表面、断面微观结构, 并用原子力显微镜测量了涂层的粗糙度. 此外, 计算了冷喷涂过程中粉末颗粒的实际速度, 并采用有限元分析软件ANSYS/LS-DYNA模拟了冷喷涂过程中颗粒撞击基体时的变形情况.  相似文献   

14.
We investigate oxidation and oxide growth on single-crystal copper surfaces using reactive molecular dynamics simulation. The kinetics of surface oxide growth are strongly correlated with the microstructure of the metal substrates. Simulating oxide layer growth along the (100), (110), and (111) orientations of crystalline copper, oxidation characteristics are investigated at temperatures of 300?K and 600?K. The oxidation kinetics are found to strongly depend on the surface orientation, ambient temperature, and surface defects. The effect of surface morphology on oxidation characteristics is analyzed by comparing oxygen adsorption on various sites and the structure factor. The surface oxide formed on (100) retains the initial crystal structure in the 300–600?K range. The (100) surface shows the highest oxidation rate at both temperature conditions but saturates, facilitating oxygen adsorption on hollow sites. The oxidation kinetics of the (100) orientation are found to be not significantly affected by surface defects. (110) shows modest oxidation at 300?K but the highest oxidation is observed at 600?K. By surface disorder and reconstruction, the oxide layer is produced continuously. The (111) surface is sensitive to ambient temperature and surface defects, showing that surface reconstruction is a key element for further oxidation. The charge distribution of oxidized Cu atoms indicates multiple groups of stoichiometric oxides, while the fraction of CuO-like characteristics increases significantly on the (110) and (111) orientations at higher temperature (600?K). The energetics and mechanisms of oxidation on Cu metal substrates at the nanoscale are discussed in detail, and comparisons with available experimental and other theoretical studies are presented wherever possible.  相似文献   

15.
气相合成SnO2超微粒薄膜研究   总被引:2,自引:0,他引:2  
用直流气体放电活化反应蒸发法在玻璃基片上沉积的SnO2超微粒薄膜,研究其过程中各工艺参数对薄膜结构的影响及作用机理,结果表明,SnO2超微粒薄膜粒径随氧分压增加而增大;蒸镀时间的延长有助于SnO2的生成,也使薄膜发生晶化;而增加放电电压,则薄膜出现外延单晶生长趋势。  相似文献   

16.
NiTi shape memory alloy thin films are deposited on pure Cu substrate at substrate ambient temperatures of 300 °C and 450 °C. The surface and interface oxidation of NiTi thin films are characterized by X-ray photoelectron spectroscopy (XPS). After a subsequent annealing treatment the crystallization behavior of the films deposited on substrate at different temperatures is studied by X-ray diffraction (XRD). The effects of substrate temperature on the surface and interface oxidation of NiTi thin films are investigated. In the film surface this is an oxide layer composed of TiO2. The Ni atom has not been detected on surface. In the film/substrate interface there is an oxide layer with a mixture Ti2O3 and NiO in the films deposited at substrate temperatures 300 °C and 450 °C. In the films deposited at ambient temperature, the interface layer contains Ti suboxides (TiO) and metallic Ni.  相似文献   

17.
Ceramic-like coatings with a thickness of up to 40 μm are formed on aluminum composites without additives and with copper additives (1 and 4.5%) in a silicate-alkaline electrolyte by microarc oxidation. The composites are prepared by powder metallurgy (cold pressing and sintering in forevacuum). An increase in the copper concentration in the composites to 4.5% leads to the retardation of anode voltage growth on the initial stage of oxidation corresponding to the formation of a barrier layer. The coatings are studied by scanning electron microscopy, X-ray microanalysis, X-ray photoelectron spectroscopy, and X-ray diffraction. The morphology of their surface corresponds to the morphology of the surface of coatings on compact aluminum alloys. According to X-ray photoelectron spectroscopy, a thin 1-μm layer forms on the surface. It consists predominantly of electrolyte components. X-ray diffraction analysis shows that the coatings mainly consist of γ-Al2O3 oxide as well as the η-Al2O3 phase, the peaks of which are broadened. This broadening is characteristic of the amorphous component and may be due to the presence of nanocrystalline regions in the coating structure. In the coatings on the composite Al + 4.5% Cu, mullite Al2SiO5 and copper oxide CuO are also found. The excess aluminum content may be associated with residual unoxidized aluminum inclusions in the structure of the coatings.  相似文献   

18.
A unique combination of pulsed dc and radio frequency (RF) discharge deposition was used to deposit thick (∼5 μm) and adherent (2-4 MPa) Teflon-like coatings on a stainless steel (SS) shell of 2 m diameter size, through plasma enhanced chemical vapor deposition (PECVD). The details of deposition on such a big industrial scale component are reported for the first time. In this method, highly adherent thin interface layers were grown on SS shell that was electrically grounded, using pulsed dc discharge, followed by RF discharge deposition to build up the required coating thickness. The fluorocarbon precursor molecules, required for the deposition of Teflon-like coating, are generated indigenously by pyrolyzing the Teflon powder. The deposited coating was studied for its chemical bond state, surface roughness (Ra), morphology, thickness, and adhesive strength. These studies were carried out by using XPS, AFM, SEM, etc. The adhesive strength of the coating was measured by pin-pull test as per ASTM D4541 standard test. The coatings deposited with pulsed dc discharge were observed to have higher adhesive strength when compared with those deposited with RF discharge.  相似文献   

19.
D.W. Wheeler 《哲学杂志》2013,93(3):285-310
This paper describes a study of the behaviour of diamond coatings when subjected to solid particle erosion from sand particles. The coatings were deposited by chemical vapour deposition (CVD) onto tungsten substrates and tested using a high velocity air–sand erosion test facility. The erosion tests were conducted using particle impact velocities of between 33 and 268 m/s. Examination of the eroded test specimens showed that the principal damage features were circumferential cracks and pin-holes. Comparison with Hertz impact theory revealed that the measured circumferential crack diameters were more than double the predicted Hertzian contact diameter. Moreover, a trend of increasing circumferential crack diameter with coating thickness, which is not predicted by Hertz, was found. Instead, the crack diameters showed good agreement with those predicted by the theory of stress wave reinforcement, which is more commonly associated with liquid impact damage of brittle materials. During impact, the bulk compression and shear waves are reflected at the rear surface of debonded regions of the coating to return to the front surface and reinforce the Rayleigh surface wave, which generates a tensile stress. Where this stress exceeds the local tensile strength of the coating, a ring of cracks surrounding the area of impact is created. The results from the present study therefore suggest that stress wave reflection is responsible for the formation of the cracks at locally debonded regions of the coating. This hypothesis was supported by images acquired using scanning acoustic microscopy, which showed that circumferential cracks and pin-holes were only found on areas of the coating that had become delaminated by multiple particle impacts during the erosion tests.  相似文献   

20.
Kinetic spraying (or cold gas dynamic spraying) works by accelerating small solid particles to supersonic velocities, and then impacting them onto a substrate. These high impact velocities, and low particle temperatures are the principal attributes of kinetic spraying technology. However, only recently has this technology's interfacial behavior, due to particle/substrate impaction, become well understood. In order to investigate the particle/substrate bond behavior, Al-Si feedstock was deposited onto mild steel, over a range of particle velocities; next, their respective coating bond strengths were measured by the stud pull coating adherence test. The effects of the particle velocity and the substrate surface roughness on the coating bond strength were presented, and a model of the particle/substrate bond generation was discussed in an effort to estimate the bond strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号