首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Well-aligned ZnO nanorods and Mn-doped ZnO nanorods are fabricated on Si (1 0 0) substrate according to the contribution of Zn metal catalysts. Scanning electron microscopy and high-resolution transmission electron microscopy images indicate that the influence of Zn catalyst on the properties of ZnO can be excluded and the growth of ZnO nanorods follows a vapor-liquid-solid and self-catalyzed model. Mn-doped ZnO nanorods show a typical room temperature ferromagnetic characteristic with a saturation magnetization (MS) of 0.273μB/Mn. Cathodoluminescence suggests that the ferromagnetism of Mn-doped ZnO nanorods originates from the Mn2+-Mn2+ ferromagnetic coupling mediated by oxygen vacancies. This technique provides exciting prospect for the integration of next generation Si-technology-based ZnO spintronic devices.  相似文献   

2.
Well-aligned single crystalline zinc oxide (ZnO) nanorods were successfully grown, by hydrothermal synthesis at a low temperature, on flexible polyethylene terephthalate (PET) substrates with a seed layer. Photoluminescence (PL), field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) measurements were used to analyze the optical and structural properties of ZnO nanorods grown for various durations from 0.5 h to 10 h. Regular and well-aligned ZnO nanorods with diameters ranging from 62 nm to 127 nm and lengths from 0.3 μm to 1.65 μm were formed after almost 5 h of growth. The growth rate of ZnO grown on PET substrates is lower than that grown on Si (1 0 0) substrates. Enlarged TEM images show that the tips of the ZnO nanorods grown for 6 h have a round shape, whereas the tips grown for 10 h are sharpened. The crystal properties of ZnO nanorods can be tuned by using the growth duration as a growth condition. The XRD and PL results indicate that the structural and optical properties of the ZnO nanorods are most improved after 5 h and 6 h of growth, respectively.  相似文献   

3.
The Cu/ZnO nanocomposite films have been synthesized by cathodic electrodeposition and characterized using X-ray diffractometer (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), photoluminescence (PL) and field emission microscope (FEM). The XRD pattern shows a set of well defined diffraction peaks, which could be indexed to the wurtzite hexagonal phase of ZnO. In addition, characteristic diffraction peaks corresponding to Cu and Zn are also observed. The SEM image shows formation of two-dimensional (2D) hexagonal sheets randomly distributed and aligned almost normal to the substrate. Uniformly distributed small clusters of Cu nanoparticles possessing average diameter of ∼25 nm, as revealed from the TEM image, are seen to be present on these 2D ZnO sheets. The selected area electron diffraction (SAED) image confirms the nanocrystalline nature of the Cu particles. From the field emission studies, carried out at the base pressure of ∼1 × 10−8 mbar, the turn-on field required for an emission current density of 0.1 μA/cm2 is found to be 1.56 V/μm and emission current density of ∼100 μA/cm2 has been drawn at an applied field of 3.12 V/μm. The Cu/ZnO nanocomposite film exhibits good emission current stability at the pre-set value of ∼10 μA over a duration of 5 h. The simplicity of the synthesis route coupled with the better emission properties propose the electrochemically synthesized Cu/ZnO nanocomposite film emitter as a promising electron source for high current density applications.  相似文献   

4.
In the present paper, well-dispersed ZnO nano-, submicro- and microrods with hexagonal structure were synthesized by a simple low temperature hydrothermal process from zinc nitrate hexahydrate without using any additional surfactant, organic solvent or catalytic agent. The phase and structural analysis were carried out by X-ray diffraction (XRD), the morphological analysis was carried out by field emission scanning electron microscopy (FESEM) and the optical property was characterized by room-temperature photoluminescence (PL) spectroscopy. The results revealed the high crystal quality of ZnO powder with hexagonal (wurtzite-type) crystal structure and the formation of well-dispersed ZnO nano-, submicro- and microrods with diameters of about 50, 200 and 500 nm, and lengths of 300 nm, 1 μm and 2 μm, respectively, on a large-scale just using the different temperatures. Room-temperature PL spectrum from the ZnO nanorods reveals a strong UV emission peak at about 360 nm and no green emission band at ∼530 nm. The strong UV photoluminescence indicates the good crystallization quality of the ZnO nanorods. Room-temperature PL spectra from the ZnO submicro- and microrods reveal a weak UV emission peak at ∼400 nm and a very strong visible green emission at 530 nm, that is ascribed to the transition between VoZni and valence band.  相似文献   

5.
Mn-doped ZnO column arrays were successfully synthesized by conventional sol-gel process. Effect of Mn/Zn atomic ratio and reaction time were investigated, and the morphology, tropism and optical properties of Mn-doped ZnO column arrays were characterized by SEM, XRD and photoluminescence (PL) spectroscopy. The result shows that a Mn/Zn atomic ratio of 0.1 and growth time of 12 h are the optimal condition for the preparation of densely distributed ZnO column arrays. XRD analysis shows that Mn-doped ZnO column arrays are highly c-axis oriented. As for Mn-doped ZnO column arrays, obvious increase of photoluminescence intensity is observed at the wavelength of ∼395 nm and ∼413 nm, compared to pure ZnO column arrays.  相似文献   

6.
Zinc oxide (ZnO) nanorods grown on chemical vapor deposited diamond films by thermal vapor transport method have been investigated. In the initial growth status, the semi-spherical ZnO nuclei were preferably deposited near the growth steps on the terraces and the boundaries of diamond grains. With increasing the growth time, the [0 0 0 1] orientated ZnO nanorods appeared and further covered the whole diamond film. It is found that the size of diamond grains would determine the diameter of ZnO nanorods. The electron field emission properties of the ZnO nanorods/diamond system have been significantly improved with respect to pure diamond film. The feature of the ZnO nanorods grown on diamond films played an important role in further enhancing the electron field emission performances.  相似文献   

7.
SnO2-coated ZnO nanorods on c-plane sapphire substrates were synthesized by pulsed laser deposition. The thickness of the polycrystalline SnO2 was ∼10 nm, as determined by high-resolution transmission electron microscopy, while the diameter of the ZnO nanorods was ∼30 nm. The sensitivity of the SnO2/ZnO structures to hydrogen was tested by depositing Ti/Au Ohmic contacts on a random array of the nanorods and measuring the current at fixed voltage. There was no response to 500 ppm H2 in N2 at room temperature, but we obtained a sensitivity of ∼70% at 400 °C. The SnO2/ZnO structures exhibit drift in their recovery characteristics and for sequential detection of hydrogen, as generally reported for SnO2 thin film sensors.  相似文献   

8.
Wurtzite zinc oxide (ZnO) nanochains have been synthesized through high-pressure pulsed laser deposition. The chain-like ZnO nanostructures were obtained from magnesium (Mg) doped ZnO targets, whereas vertically aligned nanorods were obtained from primitive ZnO targets. The Mg doping has influenced the morphological transition of ZnO nanostructures from nanorods to nanochains. The field emission scanning electron microscope images revealed the growth of beaded ZnO nanochains. The ZnO nanochains of different diameters 40 and 120 nm were obtained. The corresponding micro-Raman spectra showed strong E2H mode of ZnO, which confirmed the good crystallinity of the nanochains. In addition to near band edge emission at 3.28 eV, ZnO nanochains show broad deep level emission at 2.42 eV than that of ZnO nanorods.  相似文献   

9.
The hydrothermal growths of the ZnO nanorods with the densities ranging from 157 to 73 nanorods/μm2 were achieved by diluting the ZnO seed solution. However, the ZnO seed nanocrystals started to agglomerate for the seed solution diluted below 1% of the original nano-crystalline solutions and resulted in the formation of clustered nanorods. With the assistance of a surfactant, Triton X-100, the nanorod density can be further reduced to 4 nanorods/μm2. The diameters of the nanorods depended on the concentration of the seed solution and agitation speed of the nanorod growth solution. More diluted seed solution used and less agitation of the growth solution, the larger diameter of the nanorods was obtained. This indicated that the nanorod growth mechanism was controlled by the diffusion of reactants. With sufficient agitation of the growth solution, the nanorod can be uniformly grown with subjects on any arbitrary geometry. We have demonstrated ZnO nanorods growth on both inside and outside of biliary stents as well as on nitinol wires used as metal stents. The effect of nanorod density on the NIH 3T3 and HUVEC cells growth was also investigated in this study and the results suggested nanorod-coating to be a suitable method for controlling cell adhesion and viability on implantable devices.  相似文献   

10.
Heteroepitaxial ZnO epilayers were grown on Si(1 1 1) substrates using a vertical geometry atmospheric pressure metal organic chemical vapor deposition (AP-MOCVD) system. The growth temperature was varied from 550 °C to 650 °C in steps of 25 °C. The ZnO growth rate and surface morphology were strong functions of the growth temperature and ranged from ∼0.16 μm/h to 1.36 μm/h. The surface morphology of the ZnO films changed from granular to sharp tips as the growth temperature increased. The effect of buffer thickness was also examined, and was found to have a strong effect on the optical properties of the ZnO. An optimized growth condition for ZnO epilayers was found at 625 °C, producing a FWHM in the room temperature photoluminescence (PL) spectrum of 4.5 nm and a preferred growth orientation along the (0 0 2) direction.Transmission electron microscopy images and selected area diffraction patterns showed excellent crystalline quality of both the buffer and ZnO overlayer. When non-optimized growth temperatures were employed, post-growth annealing was found to greatly enhance the ratio of band-edge to deep level emission.  相似文献   

11.
Pyramidal ZnO nanorods with hexagonal structure having c-axis preferred orientation are grown over large area silica substrates by a simple aqueous solution growth technique. The as-grown nanorods were studied using XRD, SEM and UV-vis photoluminescence (PL) spectroscopy for their structural, morphological and optical properties, respectively. Further, the samples have also been annealed under different atmospheric conditions (air, O2, N2 and Zn) to study the defect formation in nanorods. The PL spectra of the as-grown nanorods show narrow-band excitonic emission at 3.03 eV and a broad-band deep-level emission (DLE) related to the defect centers at 2.24 eV. After some mild air annealing at 200 °C, fine structures with peaks having energy separation of ∼100 meV were observed in the DLE band and the same have been attributed to the longitudinal optical (LO) phonon-assisted transitions. However, the annealing of the samples under mild reducing atmospheres of N2 or zinc at 550 °C resulted in significant modifications in the DLE band wherein high intensity green emission with two closely spaced peaks with maxima at 2.5 and 2.7 eV were observed which have been attributed to the VO and Zni defect centers, respectively. The V-I characteristic of the ZnO:Zn nanorods shows enhancement in n-type conductivity compared to other samples. The studies thus suggest that the green emitting ZnO:Zn nanorods can be used as low voltage field emission display (FED) phosphors with nanometer scale resolution.  相似文献   

12.
A superhydrophobic ZnO oriented nanorods coating on brocade substrate was prepared by a low-temperature wet chemical route, and the corresponding waterproof properties were evaluated. From wetting measurement, the modified brocades have a water contact angle of ∼152° and roll-off angle of 9° to a 10 μL water-droplet. A direct immersion of the modified brocades in water gives a strongly water-repellent behavior. The obtained waterproof brocades offer an opportunity for fabricating some special and protective drygoods.  相似文献   

13.
ZnO nanorod arrays on ZnO-coated seed layers were fabricated by aqueous solution method using zinc nitrate and hexamethylenetetramine at low temperature. The seed layers were coated on ITO substrates by electrochemical deposition technique, and their textures were dominated by controlling the deposition parameters, such as deposition potential and electrolyte concentration. The effects of the electrodeposited seed layers and the growing parameters on the structures and properties of ZnO nanorod arrays were primarily discussed. The orientation and morphology of both the seed layer and successive nanorods were analyzed by using X-ray diffraction (XRD), SEM and TEM. The results show that the seed layer deposited at −700 mV has evenly distributed crystallites and (0 0 2) preferred orientation; the density of resultant nanorods is high and ZnO nanorods stand completely perpendicular onto substrates. Meanwhile, the size of nanorods quite also depends on the growth solution, and the higher concentration of growth solution primary leads to a large diameter of the ZnO nanorods.  相似文献   

14.
The gas-phase growth and optical characteristics of 1-dimensional ZnO nanostructure have been investigated. The ZnO nanowires (NWs) were grown vertically on Au coated silicon substrates by vapor-liquid-solid (VLS) growth mechanism using chemical vapor deposition (CVD). The ZnO NWs were grown in the crystal direction of [0 0 0 1]. The ZnO NWs exhibit the uniform size of less than 100 nm in diameter and up to 5 μm in length. Photoluminescence (PL) spectrum of ZnO NWs shows the strong band-edge emission at ∼380 nm (∼3.27 eV) without significant deep-level defect emission. The exciton lifetime of ZnO NWs was measured to be approximately 150 ± 10 ps.  相似文献   

15.
The synthesis of nanocrystalline zinc oxide (ZnO) in the presence of poly-vinylpyrrolidone (PVP) as capping agent through hydrothermal process, and their structural and optical properties were reported. PVP modified ZnO nanorods grown hydrothermally involve a heterogeneous chemical reaction in the presence of water as a solvent medium and reaction temperature of 100 °C for 7 h in a hot air oven and calcined in air at 500 °C for 3 h. Crystal structure, phase purity and average crystallite size of ZnO were studied by powder X-ray diffraction (PXRD). The strain associated with the as-prepared samples due to lattice deformation was estimated by Williamson–Hall (W–H) analysis. Structural morphology was investigated using scanning electron microscopy (SEM), which showed the formation of nanorods with PVP capping. The growth mechanism of ZnO nanorods and its capping by poly-vinylpyrrolidone are briefly discussed through FT-IR adsorption spectra. The optical behavior of the samples was analyzed through photoluminescence (PL) spectroscopy with an emission spectra in visible region ∼418 nm indicate the applicability of using it as a transport material in solar cells.  相似文献   

16.
In this work, novel windmill-like ZnO structures were fabricated through a solution route at low reaction temperature. The as-synthesized ZnO nanowindmill has a central trunk of nanorod and six symmetrical nanorods grown epitaxially on the surface of the ZnO trunk along [0 0 0 1] direction. Each nanorod forming the windmill with a smooth top is about 6 μm in length and about 700 nm in diameter. Several control experiments were conducted to study the formation of the nanowindmills of ZnO in detail. Cathodoluminescence (CL) property of the as-obtained product was investigated, which shows there are three emission peaks centered at 384, 616 and 753 nm in CL spectrum.  相似文献   

17.
An effective low-temperature growth method to fabricate hexagonally oriented ZnO nanorod arrays onto PET fabrics is reported. The effect of substrate pre-treatment and C6H12N4 concentration on the structure of ZnO nanorod arrays were investigated in details by X-ray diffraction (XRD), FE-SEM and ultraviolet protection factor (UPF). The results show that substrate pre-treatment, C6H12N4 concentration indeed have great influence on the growth of ZnO nanorod arrays. It is indispensable to introduce a ZnO seed layer on the substrate and under growth condition of n(C6H12N4):n[Zn(NO3)2] = 1:1, T = 90 °C, t = 3 h, the well-aligned ZnO nanorod arrays with 40-50 nm in diameter and 300-400 nm in length were achieved on the pre-treated PET fabrics. The ZnO nanorods grown on PET fabrics possessed an ultrahigh ultraviolet protection factor of 480.52 in this study, indicating an excellent protection against ultraviolet radiation in comparison with the untreated PET fabrics.  相似文献   

18.
Flower-like ZnO nanorods have been synthesized by heating a mixture of ZnO/graphite powders using the thermal evaporation and vapor transport on Si (1 0 0) substrates without any catalyst. The structures, morphologies and optical properties of the products were characterized in detail by using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) and Raman spectroscopy. The synthesized products consisted of large quantities of flower-like ZnO nanostructures in the form of uniform nanorods. The flower-like ZnO nanorods had high purity and well crystallized wurtzite structure, whose high crystalline quality was proved by Raman spectroscopy. The as-synthesized flower-like ZnO nanorods showed a strong ultraviolet emission at 386 nm and a weak and broad yellow-green emission in visible spectrum in its room temperature photoluminescence (PL) spectrum. In addition, the growth mechanism of the flower-like ZnO nanorods was discussed based on the reaction conditions.  相似文献   

19.
Cu-doped ZnO films with hexagonal wurtzite structure were deposited on silicon (1 1 1) substrates by radio frequency (RF) sputtering technique. An ultraviolet (UV) peak at ∼380 nm and a blue band centered at ∼430 nm were observed in the room temperature photoluminescent (PL) spectra. The UV emission peak was from the exciton transition. The blue emission band was assigned to the Zn interstitial (Zni) and Zn vacancy (VZn) level transition. A strong blue peak (∼435 nm) was observed in the PL spectra when the αCu (the area ratio of Cu-chips to the Zn target) was 1.5% at 100 W, and ZnO films had c-axis preferred orientation and smaller lattice mismatch. The influence of αCu and the sputtering power on the blue band was investigated.  相似文献   

20.
Highly ordered and stepped ZnO comb-like structures were fabricated using conventional thermal evaporation method. Zn powder covered by a layer of a mixture of ZnO and graphite was employed as the Zn source. The obtained ZnO comb-like structures are several tens of micrometers and some of them are even up to 100 μm. Both the widths of the belts and the lengths of the branches gradually decrease along the growth direction of ZnO comb-like structures. Under the most suitable condition, ZnO nanorods branches have uniform diameters and are evenly distributed on the belt-like stem. Possible growth process of ZnO comb-like structures was discussed. The effect of growth temperature on the morphology of the obtained products was also investigated. Room-temperature photoluminescence spectra from the ZnO comb-like structures and the nanorods film reveal weak UV emission and strong green emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号