首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
To improve the anterior surface biocompatibility of hydrophobic acrylic intraocular lens (IOL) in a convenient and continuous way, poly(ethylene glycol)s (PEGs) were immobilized by atmospheric pressure glow discharge (APGD) treatment using argon as the discharge gas. The hydrophilicity and chemical changes on the IOL surface were characterized by static water contact angle and X-ray photoelectron spectroscopy to confirm the covalent binding of PEG. The morphology of the IOL surface was observed under field emission scanning electron microscopy and atomic force microscopy. The surface biocompatibility was evaluated by adhesion experiments with platelets, macrophages, and lens epithelial cells (LECs) in vitro. The results revealed that the anterior surface of the PEG-grafted IOL displayed significantly and permanently improved hydrophilicity. Cell repellency was observed, especially in the PEG-modified IOL group, which resisted the attachment of platelets, macrophages and LECs. Moreover, the spread and growth of cells were suppressed, which may be attributed to the steric stabilization force and chain mobility effect of the modified PEG. All of these results indicated that hydrophobic acrylic IOLs can be hydrophilic modified by PEG through APGD treatment in a convenient and continuous manner which will provide advantages for further industrial applications.  相似文献   

2.
《Composite Interfaces》2013,20(2-3):321-328
A new 'graft-onto' method to attach poly(ethylene glycol) (PEG) onto multi-walled carbon nanotubes (MWNTs) has been developed. The method is based on the coupling reaction of radicals formed at the chain end of PEG onto the surface of MWNTs. The polymeric radicals are generated by atom (halogen) transfer reaction between chloroacetyl-terminated PEG and transition metal catalysts. The method allows direct covalent attachment of PEG to pristine MWNTs without pretreatment that could alter their original structure. The resulting PEG-grafted MWNTs showed improved dispersion stability in isopropanol and methanol.  相似文献   

3.
《Surface science》1997,385(1):l917-l921
The structural ordering of surface atoms during Si deposition on singular and vicinal GaAs(001) surfaces has been studied by reflectance difference (RD) spectroscopy using the difference function between the Si-covered and the bare surface. In dependence on the Si coverage the difference spectra correspond to RD spectra of the bare Si(001)-(1×2) or of the As-terminated Si(001):As(2×1) surface. This finding and the behaviour of RD transients recorded at 3.8 eV photon energy allows to define a (3×2)α phase with Si dimers in the top layer and Ga dimers in the third layer, and a (3×2)β phase with As-dimer rows on top of Si in the second layer.  相似文献   

4.
《Nuclear Physics B》1988,297(2):338-348
The p-loop amplitude of closed bosonic string theory involves the integration over the moduli space. We seek an explicit parametrization of Riemann matrices in terms of 3p - 3 complex variables by solving the Kadomcev-Petviasvili (KP) equation. We find explicit solutions of this problem (Schottky problem) for certain types of degenerate surfaces. For these classes of surfaces, we obtain closed bosonic string amplitudes from the Belavin-Knizhnik theorem using our parametrizations. We show in what precise way they are related to the correlation functions on the Riemann surfaces.  相似文献   

5.
Surface immobilization of poly(ethylene glycol) (PEG) is an effective method to produce a material surface with protein repulsive property. This property could be made permanent by using covalent grafting of the PEG molecules onto material surfaces. In this study, self-assembled monolayers (SAMs) of PEG on silicon-containing materials (silicon chip and glassplate) were obtained through a one-step coating procedure of one kind of silanated PEG molecules made through the reaction between monomethoxy PEG and 3-isocyanatopropyltriethoxysilane. Atomic force microscopy (AFM) and water static contact angle measurement were employed to investigate the surface topography and wettability of the PEGylated material surfaces. The changes in the topography and the water contact angle of the surfaces with time of incubation in PBS solution were also measured. The results revealed that stable and uniform self-assembled monolayers of PEG could be formed on silicon or glass surfaces by simply soaking the substrates in the solution of silanated PEGs. The covalent coupling of PEGs to the substrates was also confirmed. In order to evaluate the stability of the SAMs, blood compatibility of the modified glassplate surface was evaluated by measuring full blood activated partial thromboplastin time (APTT), prothrombin time (PT), and thrombin time (TT), as well as by scanning electron microscopy (SEM) analysis of the appearance of adherence and denaturation of blood platelets onto the glassplate. The silanated PEGs were shown to have good effect on the protein-repulsion as well as haemocompatibility of the substrates.  相似文献   

6.
In this work a simple and rapid method for the creation of bio-selective surfaces is described. Specifically, electrochemical printing of an alkyl self-assembled monolayer, also known as “constructive microlithography”, was integrated with N-hydroxysuccinimide chemical group amplification to create patterns consisting of polyethyleneglycol (PEG) and octadecyltrichlorosilane (OTS) micrometer-size features. X-ray photoelectron spectroscopy (XPS) analysis was carried out near the C 1s ionization edge to characterize the patterns for the chemical groups formed in the near-surface region during the electrochemical oxidation and after functionalization. PEG patterns were then exposed to fluorescently labeled bovine serum albumin (BSA) to test their efficacy in reducing non-specific adsorption within defined areas. It was shown by fluorescence microscopy that the PEG functionalized portions of the patterns were effective in reducing the adsorption of bovine serum albumin. Finally, cell adhesion experiments were carried out on PEG patterns pre-treated with fibronectin to promote epithelial cell adhesion to non-PEGylated regions. Cell adhesion was assessed using EGFP-expressing epithelial cells and found to be highly selective for the fibronectin coated regions while maintaining healthy cell growth with gene expression.  相似文献   

7.
纳米Al2O3表面接枝修饰的XPS研究   总被引:1,自引:0,他引:1  
在纳米Al2O3表面接枝聚缩醛可在粒子表面建立起空间位阻稳定层, 不但提高了纳米粒子的分散稳定性, 还可以增强纳米粒子与树脂基体的相容性. X射线光电子能谱(XPS)的分析结果表明, 经过聚缩醛接枝改性的纳米Al2O3的Al(2p)峰几乎消失, O(1s)峰也相应降低, 与之相对应的是C(1s)峰有了明显的增长, 对C(1s)峰精细扫描及分峰拟合表明, 纳米Al2O3表面碳元素中有61.92%属于接枝物聚缩醛的有机碳, 接枝物聚缩醛与纳米Al2O3形成了Al-O-C键, 两者产生化学结合. 同时对比XPS和热失重分析(TG)的数据结果, 可以推测聚缩醛主要分布在纳米Al2O3的表面, 而在体相中独立存在的概率较小.  相似文献   

8.
《Solid State Ionics》2006,177(5-6):573-579
Solid polymer electrolyte membranes were prepared as semi-interpenetrating networks by photo-induced polymerization of mixtures of poly(ethylene glycol) (PEG) methacrylate macromonomers in the presence of poly(methyl methacrylate) (PMMA) and lithium bis(trifluoromethanesulfonyl)imide salt. The composition of the membranes was varied with respect to the PMMA content, the degree of cross-linking, and the salt concentration. Infrared analysis of the membranes indicated that the lithium ions were coordinated by the PEG side chains. Calorimetry results showed a single glass transition for the blend membranes. However, dynamic mechanical measurements, as well as a closer analysis of the calorimetry data, revealed that the blends were heterogeneous systems. The ionic conductivity of the membranes increased with the content of PEG-grafted polymethacrylate, and was found to exceed 10 5 S cm 1 at 30 °C for membranes containing more than 85 wt.% of this component in the polymer blend.  相似文献   

9.
Triangular, truncated triangular, quadrangular, hexagonal, and net-structured silver nanoplates as well as decahedral silver nanoparticles were manipulatively prepared starting from silver nitrate and silver seeds in the presence of poly(ethylene glycol) (PEG), poly(N-vinyl pyrrolidone) (PVP), and Tween 80 at room temperature, respectively. UV-vis spectroscopy, XRD, HRTEM, SAED, and FTIR were used to illustrate the crystal growth process and to characterize the resultant silver nanoparticles. It was found that the silver seeds and organic modifiers synergistically affected the morphology evolution of the silver nanoparticles. The co-presence of silver seeds and PEG was beneficial to the formation of triangular and truncated triangular silver nanoplates; the silver seeds and PVP favored the formation of polygonal silver nanoplates; the silver seeds and Tween 80 preferred to the formation of net-structured silver plates. The morphology evolution of the resultant silver nanoparticles was correlated with the crystallinity of the silver seeds and the adsorption ability of the organic modifiers on the crystal surfaces.  相似文献   

10.
Herein reported is the synthesis of functionalised oligoethylene glycol molecules, with an azido group at one end and an ionisable group at the other end, and their attachment onto alkyne-terminated silicon(100) surfaces using ‘click’ chemistry. The modified surfaces were characterised using X-ray photoelectron spectroscopy (XPS) and water contact angle goniometry. The antifouling behaviour of these surfaces was assessed and it was shown that while surfaces presenting both charged and ethylene glycol moieties are antifouling, the antifouling effectiveness is influenced by the surface charge as modulated via the pH of the solution.  相似文献   

11.
The kinetics of assembly of polyethylene glycol (PEG)-coated superparamagnetic Fe3O4 nanoparticles in aqueous suspension on planar Si(Ti)O2 surfaces have been determined using high-resolution optical waveguide lightmode spectroscopy (OWLS). Analysis of the results revealed that the initially uniform population was spontaneously transformed into two types of particles with significantly different adsorption behaviour.  相似文献   

12.
The static and dynamic characteristics of layer displacement fluctuations in smectic-A films supported on the surface of a solid substrate are calculated with due regard for the profiles of the flexural and tensile (compressive) moduli of smectic layers. The difference in the surfaces bounding the film and the asymmetry of the profiles of the elastic moduli with respect to the central layer of the film are taken into account. The profiles of fluctuations of smectic-layer displacements and the correlations between these fluctuations are determined for the films formed by liquid-crystal compounds that can undergo a bulk smectic-A-nematic phase transition. The dynamic correlation functions derived for these fluctuations are used for calculating the correlations between the intensities of x-ray scattering by a film at different instants of time. It is demonstrated that, in smectic-A films supported on the surface of a solid substrate, unlike free-standing smectic-A films, the effect of temperature on the dynamics of layer displacement fluctuations can be observed in experiments on dynamic x-ray scattering from films that are not very thick (the number of layers N ~ 20) and at considerably smaller recoilmomentum components in the film plane.  相似文献   

13.
Polymeric self-consistent field theory is used to investigate microstructures and interphase properties of diblock copolymers grafted onto solid surfaces in a homopolymer melt. The calculations show that the grafted diblock copolymers can self-assemble into hemispherical microstructures at low grafting densities of the diblock copolymers. The morphology transforms into hemicylinder-like and sandwich-like lamellar microstructures with an increase in the chain-grafting density. The effective thickness of the grafted block layer and the interphase width between the homopolymer melt and the grafted copolymers strongly depend on the physicochemical parameters of the system, such as the composition of the grafted copolymer, the chemical incompatibility between the different components, the length ratio of grafted copolymer to homopolymer, and the grafting density of the diblock copolymers. In addition, the above computational results of microphase-separated structures and interphase properties are qualitatively compared with our previous experimental observations. The comparison indicates that our theoretical results not only reproduce the general feature of the experimental observations, but also elucidate the internal structural information and complement the findings in the region of high grafting densities of diblock copolymers.  相似文献   

14.
The reactivity of the relatively inert surfaces of iron-oxide magnetic nanoparticles can be significantly improved by coating the surfaces with silica. Unfortunately, however, this nonmagnetic silica layer tends to dilute the magnetic properties of the nanoparticles. Therefore, the silica layer should be as continuous, homogeneous, and as thin as possible.In this investigation we coated superparamagnetic maghemite nanoparticles by hydrolysis and the polycondensation of tetraethyl orthosilicate (TEOS), with the ethanol solution of TEOS being added to a stable suspension of citric acid-coated nanoparticles. The influences of the various parameters of the procedure on the quality of the coatings were systematically evaluated. The quality of the silica layer was characterized using electron microscopy and by performing leaching of the nanoparticles in HCl, while the surface reactivity was tested by grafting (3-aminopropyl) triethoxysilane (APS) onto the nanoparticles. We observed that the surface concentration of the grafted APS strongly increased when the nanoparticles were coated with a silica layer. The choice of experimental conditions for the coating procedure that favors the heterogeneous nucleation of silica on the surfaces of the nanoparticles enabled the preparation of very thin silica layers, less than 2 nm thick. By decreasing the amount of added TEOS to correspond to a monolayer of -Si-OH at the nanoparticles' surfaces, their surface reactivity could be very much improved, and with a reduction in their magnetization of only ∼10%.  相似文献   

15.
Direct grafting of organic monolayers on Si is of prime interest in order to give specific properties to a silicon surface. However, for microelectronics applications, this possibility is hampered by the limited stability of the grafted layers. It has been previously established that alkyl layers attached to Si surfaces through Si-C bonds become unstable at 250-300 °C, by desorption of alkenes. Changing the nature of the bonding to the surface might allow one to circumvent this desorption pathway and increase the layer stability. In our work, decanol and decyl aldehyde are reacted with the Si(1 1 1)-H surface at ∼100 °C during 20 h in order to obtain alkoxy monolayers. FTIR measurements performed in ATR geometry show that the grafted molecule surface coverage is on the order of 33% after reaction with decanol and 50% after reaction with decyl aldehyde. Characterization by AFM essentially reveals that the morphology of the grafted surfaces is unaffected as compared to that of Si-H surfaces. However, the edges of the terraces at alcohol-grafted surfaces exhibit some pitting, probably due to the presence of water in the grafting liquid. Thermal stability studies show that alkoxy chains progressively disappear from the Si surface between 200 and 400 °C. From the CH2/CH3 ratio in the CH region (2760-3070 cm−1), it appears that the chains undergo progressive dissociation by C-C bond breaking before their complete disappearance from the surface. Therefore, the thermal behaviour of alkoxy monolayers appears quite distinct from that of alkyl monolayers that tend to leave the surface in a much narrower temperature range (250-350 °C), essentially via breaking of the Si-C bonds.  相似文献   

16.
Multiple reaction pathways are available to a polyatomic molecule interacting with a solid surface. Delineation of exact temperature regions in which the various pathways are either active or inactive is accomplished using a new method, Scanning Kinetic Spectroscopy (SKS). SKS uses a calibrated and collimated beam of reactant molecules incident upon a clean single crystal surface in UHV. A multiplexed quadrupole mass spectrometer (QMS) is enclosed inside a differentially pumped random flux shield, in line of sight to the crystal surface. The crystal temperature is programmed with a linear ramp (dT/dt = 2K/s.) and reactant consumption, product evolution, and desorption of stable surface species are simultaneously measured in one experiment. SKS data are presented here which characterize the reactions of methanol with the single crystal surfaces Ni(111), Cu(111), and Cu(111) plus preadsorbed oxygen. Application of the SKS method as an efficient probe of surface reaction pathways is illustrated by the contrasting chemistry of these surfaces. The methanol plus Ni(111) system is examined in detail in order to relate the observed SKS features to specific molecular reaction pathways on the Ni(111) surface.  相似文献   

17.
The interactions between surfaces modified with grafted polymers is studied theoretically. The aim of this work is to find polymer surface modifications that will result in localized attractive interactions between the surfaces. The practical motivation of the work is to find means to control the distance between bilayers and solid supports in supported membranes. Two theoretical approaches are used, the analytical treatment of Alexander and a molecular theory. It is found that grafting each end of the polymer to each surface results in an interaction with a well defined minimum. The location of the minima is found to be very close to the thickness of the polymer layer when the chains are grafted to only one of the surfaces. The predictions of the analytical theory are in excellent agreement with the molecular approach in this case. It is found that increasing the surface coverage increases the strength of the interaction. However, increasing the polymer chain length at fixed surface coverage results in a decrease of the free energy cost associated with separating the surfaces from their optimal distance. For the cases in which grafting to both surfaces is not possible, the molecular theory is used to study the effect of functionalizing segments of the chain to achieve an attractive well. It is found that by functionalizing the free end-groups of the polymers with segments attracted to the membrane, the range of the attractive interaction is significantly larger than the thickness of the unperturbed layer. Functionlizing the middle segments of the chains results in a shorter range attraction but of the same strength as in the end-functionalized layers. The optimal polymer modification is found to be such that the functionlized groups are attracted to the bare surface but are not attracted to the grafting surface. The relevance of the results to the design of experimental surface modifiers is discussed.  相似文献   

18.
Metal sputtering is known to affect metal-insulating-semiconductor (MIS) devices where the insulator is an organic monolayer grafted onto crystalline substrates. We comparatively discuss current-voltage characteristics in MIS devices, where the insulating layer is either a thin oxide layer or an organic monolayer covalently grafted onto single-crystal silicon. Variation of the sputtering geometry from on-axis to off-axis configuration is analyzed to compare differences between them, obtaining the reduction of damages in the oxide layer accordingly to the supposed conduction mechanism, but no changes in organic layer of aliphatic molecules. Effects of ultraviolet radiations, already present during metal deposition, are also discussed.  相似文献   

19.
The influence of water substitution by a substance with a different polarity on the structure of phospholipid monolayer interface in water-in-oil microemulsion has been studied by the Fourier-transform pulsed-gradient spin-echo (FT PGSE)1H nuclear magnetic resonance (NMR) and electron spin resonance (ESR) spin-label methods. For this purpose the soybean phosphatidylcholine-based microemulsion and water soluble poly(ethylene glycol) with molecular weight 400 (PEG400) were used. Self-diffusion coefficients of all microemulsion components obtained by the FT PGSE NMR technique provided information about both the size of reverse micelles and distribution of components between different microemulsion compartments. The maximum hyperfine splitting, 2A max, in the ESR spectra was used to characterize the degree of the phospholipid hydrocarbon chain mobility. It was shown that PEG400 alters significantly the size of the reverse micelles and the motion of the labeled segments of the lipid tails. A mechanism of PEG400 acting in solution of the phospholipid-based reverse micelles on the basis of the rough decrease of the micelle core polarity was suggested.  相似文献   

20.
Methods for micro- and nanostructuring are essential for functionalization of materials surfaces. In particular, photon-assisted methods for synthesis of functional surfaces have been intensively investigated in the last years. In this study, a new method for surface modification and production of long-range order periodical structures called “laser interference metallurgy” is explored. A metallic thin film sample consisting of three layers composed of Fe, Cu and Al (from top to bottom) on a glass substrate was irradiated with an interference pattern using a Nd:YAG laser (wavelength of 355 nm, 10 ns of pulse duration). For the interference pattern, a configuration producing a line-type energy distribution was chosen. The laser fluence was high enough to melt the aluminium and copper layers at the interference maxima but the iron layer remained in the solid state. Thus, diffusive and convective exchange occurred between aluminium and copper at the energy maxima positions leading to periodical alloy formation with a long-range order. Because it remained in solid state, the iron layer at the top acted as a protective layer effectively preventing removal of the molten layers. The interaction of the different layers was characterized using FIB, TEM and EDX in STEM mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号