首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on the optical properties of high-Al-content crack free AlxGa1−xN (x<0.67) films grown by molecular-beam epitaxy on Si(111) substrates using ammonia as nitrogen source. The energetic position of the A free exciton as a function of the Al content is determined from photoluminescence and reflectivity measurements at low temperature. A bowing parameter of b=1 eV is deduced from these measurements. The excitonic linewidth increases as a function of Al concentration. The observed variation agrees very well with the one calculated using a model in which the broadening effect is assumed to be due to alloy compositional disordering.  相似文献   

2.
The correlated function expansion (CFE) interpolation procedure was presented to efficiently estimate principal energy band gaps and lattice constants of the quaternary alloy AlxGa1−xSbyAs1−y over the entire composition variable space. The lattice matching conditions between x and y for the alloy AlxGa1−xSbyAs1−y substrated to InAs and GaSb were obtained by optimizing the alloy lattice constant to that of the substrates. The corresponding principal band gaps (E(Γ), E(L), and E(X)) were also calculated along the lattice matching condition on each substrate (InAs and GaSb).  相似文献   

3.
Thin (AsSe)100−xAgx films have been grown onto quartz substrates by vacuum thermal evaporation or pulsed laser deposition from the corresponding bulk materials. The amorphous character of the coatings was confirmed by X-ray diffraction investigations. Their transmission was measured within the wavelength range 400-2500 nm and the obtained spectra were analyzed by the Swanepoel method to derive the optical band gap Eg and the refractive index n. We found that both parameters are strongly influenced by the addition of silver to the glassy matrix: Eg decreases while n increases with Ag content. These variations are discussed in terms of the changes in the atomic and electronic structure of the materials as a result of silver incorporation.  相似文献   

4.
The electronic band structures of GaAs1−xNx for x=0.009, 0.016, 0.031 and 0.062 are calculated ab initio using a supercell approach in connection with the full-potential linear muffin-tin orbital method. Corrections for the ‘LDA gap errors’ are made by adding external potentials which are adjusted to yield correct gaps in pure GaAs. Even small amounts of nitrogen modify significantly the conduction bands, which become strongly non-parabolic. The effective mass in the lowest conduction band thus exhibits strong k-vector dependence. Calculated variations of gaps and effective masses with x and externally applied pressure are presented and compared to a variety of experimental data. There are significant error bars on our results due to the use of the supercell approach. These are estimated by examining the effects of varying the geometrical arrangement of the N-atoms substituting As. However, the calculations show that the electron mass for x>0.009 is much larger than that of pure GaAs, and that it decreases with x.  相似文献   

5.
Lattice-mismatched ZnS1−xTex epilayers with various Te mole fractions on GaAs (100) substrates were grown by double well temperature gradient vapor deposition. X-ray diffraction patterns showed that the grown ZnS1−xTex layers were epitaxial films. The photoluminescence spectra showed that the peak position of the acceptor-bound exciton (A0, X) varied dramatically with changing the Te mole fraction and that the behavior of the (A0, X) peak position of the ZnS1−xTex epilayers with a small amount of the Te mole fraction was attributed to a bowing effect. The reflectivity and ellipsometry spectra showed that the absorption energy peak was significantly affected due to the Stoke's effect. These results provide important information on the structural and optical properties of ZnS1−xTex/GaAs heterostructures for improving optoelectronic device efficiencies operating in the spectral range between near ultraviolet and visible regions.  相似文献   

6.
The influence of lithium doping on the crystallization, the surface morphology, and the luminescent properties of pulsed laser deposited Y2−xGdxO3:Eu3+ thin film phosphors was investigated. The crystallinity, the surface morphology, and the photoluminescence (PL) of films depended highly on the Li-doping and the Gd content. The relationship between the crystalline and morphological structures and the luminescent properties was studied, and Li+ doping was found to effectively enhance not only the crystallinity but also the luminescent brightness of Y2−xGdxO3:Eu3+ thin films. In particular, the incorporation of Li and Gd into the Y2O3 lattice could induce remarkable increase in the PL. The highest emission intensity was observed Li-doped Y1.35Gd0.6O3:Eu3+ thin films whose brightness was increased by a factor of 4.6 in comparison with that of Li-doped Y2O3:Eu3+ thin films.  相似文献   

7.
Mixed thin films of (CdO)1−x(PbO)x and (CdS)1−x(PbS)x (x=0.25) were prepared on glass substrates by spray pyrolysis technique for various substrate temperatures 300, 320 and 340 °C. Structural and optical properties were studied. XRD studies reveal the formation of mixed films. The substrate temperature of 340 °C seems to be critical for the formation of CdO-PbO mixed films. It is observed that (CdS)1−x(PbS)x mixed films were formed at all the three substrate temperatures. The direct band gap value of (CdO)1−x(PbO)x and (CdS)1−x(PbS)x mixed films is about 2.6 and 2.37 eV, respectively.  相似文献   

8.
Numerical calculations based on first-principles are applied to study the electronic and structural properties of ternary zincblende AlInN alloy. The results indicate the lattice constant has a small deviation from the Vegard’s law. The direct and indirect bowing parameters of 4.731 ± 0.794 eV and 0.462 ± 0.285 eV are obtained, respectively, and there is a direct-indirect crossover near the aluminum composition of 0.817. The bulk modulus is monotonically increased with an increase of the aluminum composition, and the deviation parameter of bulk modulus of 10.34 ± 9.37 GPa is obtained. On the contrary, the pressure derivative of bulk modulus is monotonically decreased with an increase of the aluminum composition.  相似文献   

9.
Theoretical investigations of the conduction band offset (CBO) and valence band offset (VBO) of the relaxed and pseudo-morphically strained GaAs1−xNx/GaAs1−yNy heterointerfaces at various nitrogen concentrations (x and y) within the range 0-0.05 and along the [0 0 1] direction are performed by means of the model-solid theory combined with the empirical pseudopotential method under the virtual crystal approximation that takes into account the effects of the compositional disorder. It has been found that for y < x, the CBO and VBO have negative and positive signs, respectively, whereas the reverse is seen when y > x. The band gap of the GaAs1−xNx over layer falls completely inside the band gap of the substrate GaAs1−yNy and thus the alignment is of type I (straddling) for y < x. When y > x, the alignment remains of type I but in this case it is the band gap of the substrate GaAs1−yNy which is fully inside the band gap of the GaAs1−xNx over layer. Besides the CBO, the VBO and the relaxed/strained band gap of two particular cases: GaAs1−xNx/GaAs and GaAs1−xNx/GaAs0.98N0.02 heterointerfaces have been determined.  相似文献   

10.
Hydrogenated amorphous silicon carbon films, with relatively low hydrogen content and carbon fraction x, C/(C + Si), ranging from 0.20 to 0.57 have been deposited by RF-plasma enhanced chemical vapor deposition (PECVD) for excimer laser annealing experiments. After the laser treatments all the films show structural modifications. It has been obtained that with increasing x the crystallinity degree of the Si phase decreases, while that of the SiC phase increases and becomes predominant for x = 0.39. In the overstoichiometric samples only the c-SiC phase has been observed. In all the treated samples 3C-SiC crystallites have been detected.  相似文献   

11.
Ternary alloyed CdS1−xSex thin films of variable composition ‘x’ were grown by the simple and economical chemical bath deposition technique. The as-grown thin films were characterized for structural, compositional, surface morphological, optical and electrical studies. The X-ray diffraction (XRD) patterns of the sample indicated that all the samples were polycrystalline in nature with hexagonal structure. Scanning electron microscopy (SEM) micrographs showed uniform morphology with spherical shaped grains distributed over entire glass substrate. EDAX studies confirmed that the CdS1−xSex films were having approximately same stoichiometry initially as well as finally. Room temperature optical measurements showed that band gap engineering could be realized in CdS1−xSex thin films via modulation in composition ‘x’. Electrical resistivity of CdS1−xSex thin films for various compositions was found to be low. The broad and fine tunable band gap properties of ternary CdS1−xSex thin films have potential applications in opto-electronic devices.  相似文献   

12.
A pseudopotential scheme, which incorporates compositional disorder as an effective potential, is used so as to calculate the optical properties of GaxIn1−xP ternary alloys in the zinc-blende structure. Generally, the agreement between our results and the existing data in the literature is reasonable. The composition dependence of the studied features showed a non-monotonic behaviour for most studied features. Reasons for these findings are discussed. Moreover, the effect of the compositional disorder on the features of interest has been examined and found to be important for the calculation of optical properties of GaxIn1−xP.  相似文献   

13.
Pure and Cu-doped ZnO (ZnO:Cu) thin films were deposited on glass substrates using radio frequency (RF) reactive magnetron sputtering. The effect of substrate temperature on the crystallization behavior and optical properties of the ZnO:Cu films have been studied. The crystal structures, surface morphology and optical properties of the films were systematically investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and a fluorescence spectrophotometer, respectively. The results indicated that ZnO films showed a stronger preferred orientation toward the c-axis and a more uniform grain size after Cu-doping. As for ZnO:Cu films, the full width at half maxima (FWHM) of (0 0 2) diffraction peaks decreased first and then increased, reaching a minimum of about 0.42° at 350 °C and the compressive stress of ZnO:Cu decreased gradually with the increase of substrate temperature. The photoluminescence (PL) spectra measured at room temperature revealed two blue and two green emissions. Intense blue-green luminescence was obtained from the sample deposited at higher substrate temperature. Finally, we discussed the influence of annealing temperature on the structural and optical properties of ZnO:Cu films. The quality of ZnO:Cu film was markedly improved and the intensity of blue peak (∼485 nm) and green peak (∼527 nm) increased noticeably after annealing. The origin of these emissions was discussed.  相似文献   

14.
We investigated the photoluminescence (PL) properties of carbon nitride films (CNx) deposited by rf magnetron sputtering and compared them to their microstructure depending on the target self-bias. While many of the data are compatible with ‘a-C:H like’ PL properties the observed variation of the PL efficiency η with respect to the target bias cannot be easily explained by the standard models. It is suggested that the observed variation of η is rather dominated by a change in microstructure which depends on the bombardment intensity during growth than by the concentration of non-radiative centres.  相似文献   

15.
Electrochemical etching of amorphous SiC in fluoride solution was studied. Anodic dissolution and passivation are observed for p-type electrodes under dark illumination. The dissolution of p-type a-Si1−xCx is found to be under mixed transport/kinetic control; the diffusion current is of first order in fluoride concentration. Porous etching was not observed in this case. The surface finish of 6H-SiC depends on the experimental conditions; both uniform and porous etching is observed. In this paper, we report the formation of porous p-type amorphous SiC (a-Si1−xCx) films, elaborated previously by DC magnetron sputtering and analyze the porous layers (PSC) using scanning electron microscopy, spectrophotometer and photoluminescence. The crystal structures and the preparation conditions of porous SiC are shown to have an effect on the structural and electrical properties of the material obtained. SEM observation indicates that the porous a-Si1−xCx layers have shown some specific feature; a semi-cylindrical structure of the porous network has been observed.  相似文献   

16.
In this paper, we present an experimental study on the chemical and electrochemical etching of silicon carbide (SiC) in different HF-based solutions and its application in different fields, such as optoelectronics (photodiode) and environment (gas sensors). The thin SiC films have been grown by pulsed laser deposition method. Different oxidant reagents have been explored. It has been shown that the morphology of the surface evolves with the etching conditions (oxidant, concentration, temperature, etc.). A new chemical polishing solution of polycrystalline 6H-SiC based on HF:Na2O2 solution has been developed. Moreover, an electrochemical etching method has been carried out to form a porous SiC layer on both polycrystalline and thin SiC films. The PL results show that the porous polycrystalline 6H-SiC and porous thin SiC films exhibited an intense blue luminescence and a green-blue luminescence centred at 2.82 eV (430 nm) and 2.20 eV (560 nm), respectively. Different device structures based on both prepared samples have been investigated as photodiode and gas sensors.  相似文献   

17.
The mixed-compound of Sr1−xCaxTiO3 has shown several compositional phase transformations. Photoluminescence and excitation spectra of the samples with different x and doped with 0.2% Pr3+ were investigated. Changes in the emission spectra were observed in different phases. The blue emission at 491 nm from 3P0 state was found quite strong in the tetragonal phase, and was thermally quenched in the orthorhombic phases. The intensity of the red luminescence from 1D2 increases with increasing content of calcium. The strongest red emission is obtained from CaTiO3:Pr3+. The results are discussed based on the configuration coordinate model and interaction of Pr with the charge transfer exciton state of the Ti complex.  相似文献   

18.
Using a spectroscopic ellipsometry, pseudodielectric functions 〈?〉 of InxAl1−xAs ternary alloy films (x = 0.43, 0.62, 0.75, and 1.00) from 0.74 to 6.48 eV were determined. Fast in-situ chemical etching to effectively remove surface overlayers using charge-coupled device detector and to avoid the reoxidation of the surface of films prior to the ellipsometric spectrum measurement was performed. At the high energy region, an additional critical point structure which is interpreted as the E′1 transition from the band structure calculation of the linear augmented Slater-type orbital method was reported.  相似文献   

19.
The Antimony-doped tin oxide (SnO2:Sb) films have been prepared on glass substrates by RF magnetron sputtering method. The prepared samples are polycrystalline films with rutile structure of pure SnO2 and have preferred orientation of (1 1 0) direction. XRD measurement did not detect the existence of Sb2O3 phase and Sb2O5 phase; Sb ions occupy the site of Sn ions and form the substitution doping. An intensive UV-violet luminescence peak near 392 nm is observed at room temperature. Photoluminescence (PL) properties influenced by sputtering power and annealing for the SnO2:Sb films are investigated in detail and corresponding PL mechanism is discussed.  相似文献   

20.
The structural and magnetic properties of Cr1+x(Se1−yTey)2 having a NiAs structure has been studied for (1+x)=1.27, 1.32 and 1.36 and y=0.75 by means of the Korringa-Kohn-Rostoker (KKR) band structure method. The sub-stoichiometry and the disorder on the chalcogenide sub-lattice has been treated by means of the coherent potential approximation (CPA) alloy theory. From total energy calculations a preferential site occupation on the Cr sub-lattice was found together with an antiparallel alignment of the magnetic moments on the two inequivalent Cr layers. The magnetic properties at finite temperature has been studied by means of Monte Carlo simulations on the basis of a classical Heisenberg Hamiltonian and the exchange coupling parameters calculated from first principles. This approach allowed to determine the critical temperature in good agreement with experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号