首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 574 毫秒
1.
A novel technique for synthesis of single-walled carbon nanotubes (SWNTs) in diffusion flames is presented, as is a diagnostic tool that can provide online information about nanotube size, number density, and purity. An inverse diffusion flame with a high stoichiometric mixture fraction (Zst) is used to produce SWNTs with an average length of 1 μm. The high Zst flame allows nanotubes to be produced in a fuel-rich region that is void of soot and polycyclic aromatic hydrocarbons (PAH). In addition, by operating as an inverse diffusion flame the carbon nanotubes (CNTs) are not exposed to oxygen and thus, can be collected downstream. Consequently, this flame provides a potential approach to large-scale synthesis of pure SWNTs. In addition, a differential mobility analyzer (DMA) is employed as an online diagnostic tool. The DMA can distinguish between excess catalyst particles and CNTs due to the differences in their electrical mobilities. Thus, the presence of CNTs as well as their size, number density, and purity relative to excess catalyst particles can be identified from the size distribution of the aerosol sampled downstream of the flame. This tool allows for rapid identification of the effect of changing process variables on nanotube growth and thus, the production process can be quickly optimized.  相似文献   

2.
We report here some studies of the growth mechanisms of single-wall carbon nanotubes (SWNTs) produced by the solar method as a function of the experimental conditions and the nature of catalysts. A large set of transmission electron microscopy (TEM) pictures seems to confirm the existence of one dominant growth mechanism, close to the model proposed by Saito et al., whatever the used catalyst might be. Nevertheless, the Raman spectra clearly show that the change of catalyst induces differences in diameter, structure, and electronic properties of SWNTs.  相似文献   

3.
Iron, cobalt and a mixture of iron and cobalt incorporated mesoporous MCM-41 molecular sieves were synthesised by hydrothermal method and used to investigate the rules governing their nanotube producing activity. The catalysts were characterised by XRD and N2 sorption studies. The effect of the catalysts has been investigated for the production of carbon nanotubes at an optimised temperature 750 °C with flow rate of N2 and C2H2 is 140 and 60 ml/min, respectively for a reaction time 10 min. Fe-Co-MCM-41 catalyst was selective for carbon nanotubes with low amount of amorphous carbon with increase in single-walled carbon nanotubes (SWNTs) yield at 750 °C. Formation of nanotubes was studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. Transmission electron microscope and Raman spectrum was used to follow the quality and nature of carbon nanotubes formed and the graphitic layers and disordered band, which shows the clear evidence for the formation of SWNTs, respectively. The result propose that the diameter of the nanotubes in the range of 0.78-1.35 nm. Using our optimised conditions for this system, Fe-Co-MCM-41 showed the best results for selective SWNTs with high yield when compared with Fe-MCM-41 and Co-MCM-41.  相似文献   

4.
We demonstrate that zinc oxide can catalyze the growth of single-walled carbon nanotubes (SWNTs) with high efficiency by a chemical vapor deposition process. The zinc oxide nanocatalysts, prepared using a diblock copolymer templating method and characterized by atomic force microscopy (AFM), were uniformly spaced over a large deposition area with an average diameter of 1.7 nm and narrow size distribution. Dense and uniform SWNTs films with high quality were obtained by using a zinc oxide catalyst, as characterized by scanning electron microscopy (SEM), Raman spectroscopy, AFM, and high-resolution transmission electron microscopy (HRTEM).  相似文献   

5.
Single-walled carbon nanotubes (SWNTs) were synthesized by disproportionation of carbon monoxide on an aerogel-supported Fe/Mo catalyst. A simple acidic treatment followed by an oxidation process produced a high purity (>99%) of SWNTs. The nanotubes obtained are bundled SWNTs and free of amorphous-carbon coating. Several factors that affect the yield and the quality of the SWNTs were also studied. This method shows great promise for large-scale production of SWNTs. Received: 30 August 2001 / Accepted: 3 December 2001 / Published online: 4 March 2002  相似文献   

6.
Single-walled carbon nanotubes (SWNTs) have been grown on silicon nanowires (SiNWs) by ethanol chemical vapor deposition (CVD) with Co catalysts. We have found that a surface SiOx layer of SiNWs is necessary for the formation of active Co catalysts. In fact, the yield of the SWNT/SiNW heterojunctions gradually decreases as the thickness of the surface SiOx layer decreases. Since thin SiNWs are transparent to an electron beam, the Co nanoparticles on SiNWs can be easily observed as well as SWNTs by TEM. Therefore, the relationship between the diameters of each SWNT and its catalyst nanoparticle has been investigated. The diameters of SWNTs are equal to or slightly smaller than those of the catalyst nanoparticles.  相似文献   

7.
The nucleation and rapid growth of single-wall carbon nanotubes (SWNTs) were explored by pulsed-laser assisted chemical vapor deposition (PLA-CVD). A special high-power, Nd:YAG laser system with tunable pulse width (>0.5 ms) was implemented to rapidly heat (>3×104°C/s) metal catalyst-covered substrates to different growth temperatures for very brief (sub-second) and controlled time periods as measured by in situ optical pyrometry. Utilizing growth directly on transmission electron microscopy grids, exclusively SWNTs were found to grow under rapid heating conditions, with a minimum nucleation time of >0.1 s. By measuring the length of nanotubes grown by single laser pulses, extremely fast growth rates (up to 100 microns/s) were found to result from the rapid heating and cooling induced by the laser treatment. Subsequent laser pulses were found not to incrementally continue the growth of these nanotubes, but instead activate previously inactive catalyst nanoparticles to grow new nanotubes. Localized growth of nanotubes with variable density was demonstrated through this process and was applied for the reliable direct-write synthesis of SWNTs onto pre-patterned, catalyst-covered metal electrodes for the synthesis of SWNT field-effect transistors.  相似文献   

8.
We report a comparative study on diameter distribution of single-walled carbon nanotubes (SWNTs) grown using nanoporous templates having different pore sizes, namely, zeolite-L, ZSM-5, and MCM-41. The change in the tube diameter based on catalytic film thickness and growth temperature was systematically investigated. We prepared very thin Fe catalyst films with nominal thicknesses of 0.5, 0.7, 1, and 2 Å, and the growth temperature was varied from 850 to 925 °C. We found that the SWNT mean diameter and size distribution width decreased with decreasing catalyst film thickness, growth temperature, and pore sizes of the templates. In addition, all SWNTs grown from the nanoporous templates have narrower diameter distribution compared to the SWNTs grown from SiO2 planar surface. The obtained results are straightforward and suggest that the template growth has potential for SWNT growth with very narrow diameter distribution.  相似文献   

9.
Self-assembled monolayer (SAM) techniques were used to adsorb 4-aminothiophenol (4-ATP) on platinum electrodes in order to obtain an amino-terminated SAM as the base for the chemical attachment of single-wall carbon nanotubes (SWCNTs). A physico-chemical, morphological and electrochemical characterizations of SWCNTs attached onto the modified Pt electrodes was done by using reflection-absorption infrared spectroscopy (RAIR), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), and cyclic voltammetry (CV) techniques. The SWNTs/4-ATP/Pt surface had regions of small, medium, and large thickness of carbon nanotubes with heights of 100-200 nm, 700 nm to 1.5 μm, and 1.0-3.0 μm, respectively. Cyclic voltammetries (CVs) in sulfuric acid demonstrated that attachment of SWNTs on 4-ATP/Pt is markedly stable, even after 30 potential cycles. CV in ruthenium hexamine was similar to bare Pt electrodes, suggesting that SWNTs assembly is similar to a closely packed microelectrode array.  相似文献   

10.
Carbon nanotubes can be obtained from a multitude of molecular precursors in chemical vapor deposition (CVD) processes. Here we demonstrate that the use of C60 as the carbon feedstock gas in an iron-catalyzed thermal CVD experiment leads to the formation of films of multi-walled carbon nanotubes. The critical role of the diameter of the catalyst particles in determining the efficiency of nanotube growth is clearly demonstrated. Electron microscopy and Raman spectroscopy were employed for the characterisation of the nanotube material. The structural properties of the individual nanotubes show distinctive differences to acetylene-grown multi-walled nanotubes. PACS 81.07.De; 81.10.Bk  相似文献   

11.
In this paper, carbon nanotubes were synthesized on carbon microfibers by floating catalyst method with the pretreatment of carbon microfibers at the temperature of 1023 K, using C2H2 as carbon source and N2 as carrier gas. The morphology and microstructure of carbon nanotubes were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). The composition of carbon nanotubes was determined by energy dispersive X-ray spectroscopy (EDX). The results showed that the surface of treated carbon microfibers was thickly covered by carbon nanotubes with diameters of about 50 nm. EDX image indicated that the composition of carbon nanotubes was carbon. In comparison with the sample grown on untreated carbon microfibers surface, it was found that after carbon microfibers were boiled in the solution of sulfur acid and nitric acid (VH2SO4:VHNO3 = 1:3) and immersed in the solution of iron nitrate and xylene, carbon nanotubes with uniform density can be grown on carbon microfibers surface. Based on the results, we concluded that the pretreatment of carbon microfibers had great effect on the growth of carbon nanotubes by floating catalyst method.  相似文献   

12.
Single-walled carbon nanotubes (SWNTs) encapsulating C70s, so-called C70 peapods, were synthesized in high yield by a vapor-phase doping method. Raman spectra, high resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED) measurement indicate that the tube diameter is one of the important factors to determine the orientation of C70 molecules inside the SWNTs. SWNTs with different diameters give different alignment of C70 molecules. The lying orientation is favorable over the standing orientation in thin nanotube, i.e. 1.36 nm nanotubes, whereas the standing orientation is favorable in thick nanotubes, i.e. 1.49 and 1.61 nm nanotubes.  相似文献   

13.
In this paper, we developed a new kind of substrate, the silver-coated anodic aluminum oxide (AAO), to investigate the characters of surface-enhanced resonant Raman scattering (SERRS) of the dilute single-walled carbon nanotubes. Homogeneous Ag-coated AAO substrate was obtained by decomposing the AgNO3 on the surface of AAO. single-walled carbon nanotubes (SWNTs) were directly grown onto this substrate through floating catalyst chemical vapor deposition method (CVD). SERRS of SWNTs was carried out using several different wavelength lasers. The bands coming from metallic SWNTs were significantly enhanced. The two SERRS mechanisms, the “electromagnetic” and “chemical” mechanism, were mainly responsible for the experiment results.  相似文献   

14.
We report the microwave-induced electrophilic addition of single-walled carbon nanotubes (SWNTs) with alkylhalides using Lewis acid as a catalyst followed by hydrolysis. The reaction results in the attachment of alkyl and hydroxyl groups to the surface of the nanotubes. This rapid and high-energy microwave radiation is found to be highly efficient for this reaction, which only needs as low as several minutes. The resulting nanotubes were characterized with FTIR, UV-vis-NIR, Raman, TGA, TEM and AFM. It demonstrates that iodo-alkanes show higher reaction activity with SWNTs than chloro- and bromo-alkanes.  相似文献   

15.
A carbonaceous material containing single-wall carbon nanotubes (SWNTs) has been synthesized by arc-discharge evaporation of graphite with a catalytic additive of nickel and cobalt powders. The synthesized SWNTs were purified from an amorphous carbon component (soot) and the catalyst particles by boiling in nitric acid. A comparison of the X-ray fluorescence spectra measured before and after this treatment showed that acid etching significantly decreased the content of soot in the material. The material enriched with SWNTs is characterized by a reduced threshold for the appearance of the field emission current, which is explained by a decrease in the screening effect of soot. The current-voltage characteristics of SWNTs exhibit a hysteresis, which is suggested to be due to the adsorption of molecules and radicals on the surface and at the ends of carbon nanotubes.  相似文献   

16.
Discrete Co catalytic nanoparticles with small diameters are obtained by pulsed vacuum arc evaporation on Si/SiO2 substrates, which are used for the growth of isolated single-walled carbon nanotubes (SWNTs) by an ethanol chemical vapor deposition approach (CVD). The distributions of catalytic nanoparticles change with the number of arc pulses, which allows control of the nanotubes formation. We find that an increase of ethanol pressure during CVD growth can change SWNTs from isolated ones into bundles. A new growth mechanism which combines a tip and base model for SWNT growth has been tentatively proposed. It is suggested that the small size catalytic particles prepared by pulsed arc evaporation have a potential advantage for small diameter SWNT growth. PACS 78.67.Ch; 78.67.Bf; 78.67.-n; 81.07.De; 61.46.-w  相似文献   

17.
We have succeeded in direct synthesis of single-walled carbon nanotubes (SWNTs) on a conductive substrate coated with a 3D mesoporous silica film, and observed the field emission. Co catalysts for the growth of SWNTs are deposited on the substrate by electroplating. The particle size of the catalyst is well-controlled inside defined space of the mesoporous silica film. Furthermore, the location of Co particles can be controlled in the mesopores by the electroplating method. Mono-dispersed SWNTs are grown along with the mesopores that are normal to the substrate, because Co particles are deposited at the bottom of the mesopores. It is also found that the mesoporous silica film prevents the aggregation of Co catalysts and the distortion of Au layer as the conductive substrate. The field emission measurement shows that the turn-on field is 4.2 V/μm at 10 μA/cm2. The field enhancement factor is about 1500. This approach provides an efficient methodology for fabricating an SWNTs-based field emitters. PACS 73.63.Fg; 78.55.Mb  相似文献   

18.
The image contrast enhancement in scanning electron microscopy of single-walled carbon nanotubes (SWNTs) on SiO2 surfaces was experimentally investigated using a field-emission scanning electron microscope (FESEM) using a wide range of primary electron (PE) voltages. SWNT images of different contrasts were obtained at different PE voltages. Image contrast enhancement of SWNTs was investigated by charging SiO2 surfaces at different PE voltages. The phenomena are ascribed to the surface potential difference and charge injection between SWNTs and SiO2 substrates induced by the electron-beam irradiation.  相似文献   

19.
Molecular dynamics simulations were used to study the initial growth of single-walled carbon nanotubes (SWNTs) on a supported iron cluster (Fe50). Statistical analysis shows that the growth direction of SWNTs becomes more perpendicular to the substrate over time due to the weak interaction between carbon nanotube and the substrate. The diameter of the nanotube also increases with the simulation time and approaches the size of the supported iron cluster.  相似文献   

20.
In this study, the non-covalent association of single-walled nanotube (SWNT) with polyethylene (PE) molecule and the influence of sidewall modification on the interfacial bonding between the SWNTs and polymer were investigated using molecular mechanics (MM) and molecular dynamics (MD) simulations. The model of interaction between the initially separated PE and SWNT fragments, which can be either wrapping or filling, was computed. The possible extension of polymers wrapping or filling SWNTs can be used to structurally bridge the SWNTs and polymers to significantly improve the load transfer between them when SWNTs are used to produce nanocomposites. The interfacial bonding characteristics between the single-walled nanotubes, on which -COOH, -CONH2, -C6H11, or -C6H5 groups have been chemically attached, and the polymer matrix were also investigated by performing pullout simulations. The results show that appropriate functionalization of nanotubes at low densities of functionalized carbon atoms drastically increase their interfacial bonding and shear stress between the nanotubes and the polymer matrix, where chemisorption with -C6H5 groups to as little as 5.0% of the nanotube carbon atoms increases the shear stress by about 1700%. Furthermore, this suggests the possibility to use functionalized nanotubes to effectively reinforce other kinds of polymer-based materials as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号