首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Progress in material research and processing industry is fueled by the technique of pulsed laser deposition (PLD). High energy excimer lasers enable this technique since every material is amenable to their high photon energies. Spectral properties, temporal pulse and laser beam parameters of state of the art excimer lasers will be compared with frequency converted Nd:YAG lasers. Both quality and longevity of the deposited layers strongly depend on the degree of accuracy achieved in the thin film ablation and subsequent deposition process.  相似文献   

2.
ZnCo2O4/Si heterostructures have been fabricated by a pulsed laser deposition method, and their transport behaviors and photovoltaic properties have been characterized. The ZnCo2O4/Si heterostructures show a good rectifying behavior at five different temperatures ranging from 50 K to 290 K. The measurements of the photovoltaic response reveals that a photovoltage of 33 mV is generated when the heterostructures are illuminated by a 532 nm laser of 250 mW/cm2and mechanically chopped at 2500 Hz. Both the photocurrent and the photovoltage clearly increase with the increase of the laser intensity at room temperature. However, the heterostructures' photovoltage peak decreases with the increase of the temperature. This work may open new perspectives for ZnCo2O4/Si heterostructure-based devices.  相似文献   

3.
Single-phase β-FeSi2 films on silicon (1 0 0) were fabricated by pulse laser deposition. The structure and crystal quality of the samples were characterized by X-ray diffraction and Fourier transform infrared spectroscopy. The field scanning electron microscopy showed that the film thickness increases with the increasing of the laser fluence. Moreover, atomic force microscopy observations revealed the changes of surface properties with different laser fluence. Based upon all experimental results, it is found that 7 J/cm2 is the most favorable for the formation of β-FeSi2 thin films.  相似文献   

4.
This paper presents high quality YBa2Cu3O7-δ(YBCO) thin films on LaAlO3 substrate for microwave devices prepared by pulsed laser deposition(PLD). The double-sided YBCO films cover a large area and have been optimized for key parameters relevant to microwave device applications, such as surface morphology and surface resistance(Rs).This was achieved by improving the target quality and increasing the oxygen pressure during deposition, respectively. To ev...  相似文献   

5.
The understanding and control of the ilmenite–hematite solid solutions (Fe2−x Ti x Oδ or IH) thin film structure and properties are crucial for spintronics applications. Good quality films of Fe2−x Ti x Oδ on Al2O3(0001) substrates were obtained by pulsed laser deposition. For the studied compositions (x=1, 0.7, 0.5) in a wide oxygen pressure range all the films were epitaxial, with flat interfaces, and without secondary phases. Unconventional lattice strain relaxation with the increase of in-plane lattice parameter above its relaxed bulk value was observed for different film compositions, oxygen pressures, substrate temperatures, and film growth rates. This phenomenon is most likely explained by the buckling of a few first film monolayers because of a significant compressive stress induced on the film by the sapphire substrate. The IH thin films with x=0.7 and 0.5 exhibited the properties of a room temperature magnetic semiconductor. The resistivity changed over three orders of magnitude in the studied pressure range, thus clearly demonstrating the important role of oxygen stoichiometry in the creation of carriers.  相似文献   

6.
β-FeSi2 thin films were prepared on FZ n-Si (1 1 1) substrates by pulsed laser deposition (PLD). The structural properties and crystallographic orientation of the films were investigated by X-ray diffraction (XRD) analysis. This indicates that β-FeSi2/Si (2 0 2/2 2 0) and the single-crystalline β-FeSi2 can be prepared using PLD. In photoluminescence (PL) measurements at 8 K detected by Ge detector, the PL spectra of the samples annealed at 900 °C for 1, 5, 8 and 20 h showed that the PL intensity of the A-band peak increased depending on annealing time in comparison with those of as-deposited samples. The intrinsic PL intensity of the A-band peak at 0.808 eV of the β-FeSi2 from the 20-h-annealed sample was investigated for the first time by the PLD method detected by an InGaAs detector. This result has been confirmed by temperature dependence and excitation power density of the 20-h-annealed sample with the comparison of other defect-related band peaks of the sample. Cross-sectional scanning electron microscopy (SEM) observation was also performed and the thickness of the thin films was found to be at 75 nm for 20-h-annealed. The thermal diffusion for the epitaxial growth of β−FeSi2/Si was observed when the compositional ratio of Fe to Si was around Fe:Si=1:2 for 20-h-annealed carried out by energy dispersive X-ray spectroscopy (EDX). We discussed high crystal quality of the epitaxial growth and optical characterization of β-FeSi2 achieved after annealing at 900 °C for 20 h.  相似文献   

7.
Yttria-stabilized zirconia (YSZ) buffer layers were deposited on CeO2 buffered biaxially textured Ni-W substrate by reel-to-reel pulsed laser deposition (PLD) for the application of YBa2Cu3O7−δ (YBCO) coated conductor and the influence of substrate temperature and laser energy on their crystallinity and microstructure were studied. YSZ thin films were prepared with substrate temperature ranging from 600 to 800 °C and laser energy ranging from 120 to 350 mJ. X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM) were used to investigate how thin film structure and surface morphology depend on these parameters. It was found that the YSZ films grown at substrate temperature below 600 °C or laser energy above 300 mJ showed amorphous phase, the (0 0 1) preferred orientation and the crystallinity of the YSZ films were improved with increasing the temperature, but the surface roughness increased simultaneously, the SEM images of YSZ films on CeO2/NiW tapes showed surface morphologies without micro-cracks. Based on these results, we developed the epitaxial PLD-YSZ buffer layer process at the tape transfer speed of 3-4 m/h by the reel-to-reel system for 100 m class long YBCO tapes.  相似文献   

8.
吴锋民  陆杭军  方允樟  黄仕华 《中国物理》2007,16(10):3029-3035
The heteroepitaxial growth of multilayer Cu/Pd(100) thin film via pulse laser deposition (PLD) at room temperature is simulated by using kinetic Monte Carlo (KMC) method with realistic physical parameters. The effects of mass transport between interlayers, edge diffusion of adatoms along the islands and instantaneous deposition are considered in the simulation model. Emphasis is placed on revealing the details of multilayer Cu/Pd(100) thin film growth and estimating the Ehrlich--Schwoebel (ES) barrier. It is shown that the instantaneous deposition in the PLD growth gives rise to the layer-by-layer growth mode, persisting up to about 9 monolayers (ML) of Cu/Pd(100). The ES barriers of The heteroepitaxial growth of multilayer Cu/Pd(100) thin film via pulse laser deposition (PLD) at room temperature is simulated by using kinetic Monte Carlo (KMC) method with realistic physical parameters. The effects of mass transport between interlayers, edge diffusion of adatoms along the islands and instantaneous deposition are considered in the simulation model, Emphasis is placed on revealing the details of multilayer Cu/Pd(100) thin film growth and estimating the Ehrlich-Schwoebel (ES) barrier. It is shown that the instantaneous deposition in the PLD growth gives rise to the layer-by-layer growth mode, persisting up to about 9 monolayers (ML) of Cu/Pd(100). The ES barriers of 0.08 ± 0.01 eV is estimated by comparing the KMC simulation results with the real scanning tunnelling microscopy (STM) measurements,  相似文献   

9.
Complex polymer–metal nanocomposites have a wide range of applications, e.g. as flexible displays and packaging materials. Pulsed laser deposition was applied to form nanostructured materials consisting of metal clusters (Ag, Au, Pd and Cu) embedded in a polymer (polycarbonate, PC) matrix. The size and amount of the metal clusters are controlled by the number of laser pulses hitting the respective targets. For Cu and Pd, smaller clusters and higher cluster densities are obtained as in the cases of Ag and Au due to a stronger reactivity with the polymers and thus a lower diffusivity. Implantation effects, differences in metal diffusivity and reactivity on the polymer surfaces, and the coalescence properties are discussed with respect to the observed microstructures on PC and compared to the metal growth on poly (methyl methacrylate), PMMA.  相似文献   

10.
Multiple laser beams demonstrate many advantages as energy sources in diamond synthesis. In a reported amazingly-fast multiple laser coating technique, CO2 gas is claimed as the sole precursor or secondary precursor for forming a diamond or diamond-like carbon, which remains poorly understood. The absorption coefficient changes under the irradiation of multiple lasers are one of the keys to resolve the mysteries of multiple laser beam coating processes. This study investigates the optical absorption in CO2 gas at the CO2 laser wavelength. The resonance absorption process is modeled as an inverse process of the lasing transitions of CO2 lasers. The well-established CO2 vibrational-rotational energy structures are used as the basis for the calculations with the Boltzmann distribution for equilibrium states and the three-temperature model for non-equilibrium states. Based on the population distribution, our predictions of the CO2 absorption coefficient changes as a function of temperature are in agreement with the published data.  相似文献   

11.
Theβ-Ga2O3films are prepared on polished Al2O3(0001)substrates by pulsed laser deposition at different oxygen partial pressures.The influence of oxygen partial pressure on crystal structure,surface morphology,thickness,optical properties,and photoluminescence properties are studied by x-ray diffraction(XRD),atomic force microscope(AFM),scanning electron microscope(SEM),spectrophotometer,and spectrofluorometer.The results of x-ray diffraction and atomic force microscope indicate that with the decrease of oxygen pressure,the full width at half maximum(FWHM)and grain size increase.With the increase of oxygen pressure,the thickness of the films first increases and then decreases.The room-temperature UV-visible(UV-Vis)absorption spectra show that the bandgap of theβ-Ga2O3film increases from4.76 e V to 4.91 e V as oxygen pressure decreasing.Room temperature photoluminescence spectra reveal that the emission band can be divided into four Gaussian bands centered at about 310 nm(~4.0 e V),360 nm(~3.44 e V),445 nm(~2.79 e V),and 467 nm(~2.66 e V),respectively.In addition,the total photoluminescence intensity decreases with oxygen pressure increasing,and it is found that the two UV bands are related to self-trapped holes(STHs)at O1 sites and between two O2-s sites,respectively,and the two blue bands originate from VGa2-at Ga1 tetrahedral sites.The photoluminescence mechanism of the films is also discussed.These results will lay a foundation for investigating the Ga2O3film-based electronic devices.  相似文献   

12.
The spinel LiMn2O4 is a promising candidate for future battery applications. If used as a positive electrode in a battery, the charging capacity of such a battery element is limited by the formation of a solid electrolyte interphase like layer between the electrolyte and the spinel. To study the electrolyte-electrode interaction during electrochemical cycling, spinel thin films are deposited as model electrodes on glassy carbon substrates by pulsed laser ablation. The obtained polycrystalline oxide thin films show a well defined surface morphology and are electrochemical active. Adhesion of these thin films on glassy carbon is in general poor, but can be improved considerably by a surface pretreatment or adding a thin metallic coating to the substrate prior deposition. The best adhesion is obtained for films deposited on argon plasma pretreated as well as Pt coated glassy carbon substrates. During the electrochemical characterization of Li1.06Mn2O3.8 thin film electrodes, no additional reactions of the substrate are observed independent of the used electrolyte. The best cycle stability is achieved for films on Pt coated glassy carbon substrates.  相似文献   

13.
Vertically aligned ZnO nanowires have been successfully synthesized on c-cut sapphire substrates by a catalyst-free nanoparticle-assisted pulsed-laser ablation deposition (NAPLD) in Ar and N2 background gases. In NAPLD, the nanoparticles formed in the background gas by laser ablation are used for the growth of the nanowires. The surface density of the nanowires can be controlled by varying the density of nanoparticles, which is in turn achieved by varying ablation laser parameters such as the energy and the repetition rate. When single ZnO nanowire synthesized in a N2 background gas was excited by 355 nm laser-pulse with a pulse-width of 8 ns, stimulated emission was clearly observed, indicating high quality of the nanowire.  相似文献   

14.
Layered CoO/Co(7 nm)/Cu(6 nm)/Co(7 nm) spin-valve systems capped by a 5 nm boron top layer, which exhibit giant magnetoresistance (GMR), were prepared by pulsed laser deposition (PLD) with a 193 nm ArF excimer laser. To reduce atomic intermixing at the various layer interfaces, the areal energy density of the laser was lowered to 4.2 J/cm2 for the first 2 nm of the intermediate Cu and the Co top layers, while applying 11 J/cm2 for the rest. By this procedure, a clear improvement of the GMR could be accomplished as compared to an identical reference system prepared by exclusively applying the high value of 11 J/cm2, pointing to the importance of minimizing interface mixing.Additionally, the effect of the laser intensity on the areal density and shape of m-sized droplets co-deposited onto the substrates by PLD was studied. It turned out that for the two limiting values applied in the present case, no negative influence of the droplets on the magnetic hysteresis of pure Co layers or spin-valve systems could be observed. PACS 81.15.Fg; 75.47.Np; 75.70.Cn  相似文献   

15.
(1 ? x)Pb(Mg1/3Nb2/3)O3xPbTiO3 (PMN–PT) thin films have been deposited on quartz substrates using pulsed laser deposition (PLD). Crystalline microstructure of the deposited PMN–PT thin films has been investigated with X-ray diffraction (XRD). Optical transmission spectroscopy and Raman spectroscopy are used to characterize optical properties of the deposited PMN–PT thin films. The results show that the PMN–PT thin films of perovskite structure have been formed, and the crystalline and optical properties of the PMN–PT thin films can be improved as increasing the annealing temperature to 750 °C, but further increasing the annealing temperature to 950 °C may lead to a degradation of the crystallinity and the optical properties of the PMN–PT thin films. In addition, a weak second harmonic intensity (SHG) has been observed for the PMN–PT thin film formed at the optimum annealing temperature of 750 °C according to Maker fringe method. All these suggest that the annealing temperature has significant effect on the structural and optical properties of the PMN–PT thin films.  相似文献   

16.
Iron nitride films were produced by pulsed laser deposition of Fe onto an Al substrate in an N2 atmosphere and their M?ssbauer spectra and powder X-ray diffraction patterns were measured. The nitrogen content of the iron nitride films varied depending on the N2 pressure. Under high N2 pressures, γ”-FeN (ZnS structure) and γ’”-FeN (NaCl structure) were obtained. The yields of these two phases could be controlled by varying the Al substrate temperature. γ”-FeN and γ’”-FeN were found to be paramagnetic and antiferromagnetic, respectively, at 5?K.  相似文献   

17.
The absorption spectrum of the ν2 fundamental band of the cis-conformer of the transient molecule HOPO, namely the terminal PO stretching mode, has been detected and measured using diode laser spectroscopy. The molecule was generated in a discharge flow system containing hydrogen and white phosphorus vapour (P4) and a trace of oxygen. The spectrum has the appearance of an a-type band of a near prolate asymmetric top. Above Ka = 5 the spectrum is perturbed and transitions terminating on these higher Ka levels were excluded from the fit. The vibrational frequency and rotational constants derived from the unperturbed parts of the spectrum are compatible with new high precision ab initio calculations reported here. A combined fit of the ν2 band and the ν4 band data, measured earlier, was carried out. The ν2 band origin was determined to be 1258.539525(32) cm−1, approximately 5.5 cm−1 higher than the matrix value.  相似文献   

18.
Iron films were produced by pulsed laser deposition (PLD) of iron in Ar gas and M?ssbauer spectra of these films were obtained at room temperature. The orientation of the hyperfine magnetic field was found to vary depending on the pressure of the Ar gas. Iron films produced at low Ar pressures exhibited magnetic fields parallel to the substrate surface. The magnetic field became increasingly perpendicular to the substrate with increasing Ar pressure. Collisions with Ar gas molecules reduced the translational energies of laser-evaporated iron atoms and thus the orientation of crystals formed on the substrate varied depending on the Ar pressure.  相似文献   

19.
We have measured and fitted over 600 well-resolved lines in the ν3 ring breathing band of oxirane. The spectrum is accurately reproduced by previously determined rotational and centrifugal distortion constants for the ground state, together with newly determined rotational, quartic and some sextic distortion constants for the upper state. The magnitudes of the distortion constants reveal some evidence of Coriolis interactions with nearby states. The band centre was determined as .  相似文献   

20.
Powdered layered double hydroxides (LDHs)—also known as hydrotalcite-like (HT)—compounds have been widely studied due to their applications as catalysts, anionic exchangers or host materials for inorganic or organic molecules. Assembling thin films of nano-sized LDHs onto flat solid substrates is an expanding area of research, with promising applications as sensors, corrosion-resistant coatings, components in optical and magnetic devices. The exploitation of LDHs as vehicles to carry dispersed metal nanoparticles onto a substrate is a new approach to obtain composite thin films with prospects for biomedical and optical applications. We report the deposition of thin films of Ag nanoparticles embedded in a Mg–Al layered double hydroxide matrix by pulsed laser deposition (PLD). The Ag-LDH powder was prepared by co-precipitation at supersaturation and pH = 10 using aqueous solutions of Mg and Al nitrates, Na hydroxide and carbonate, and AgNO3, having atomic ratios of Mg/Al = 3 and Ag/Al = 0.55. The target to be used in laser ablation experiments was a dry pressed pellet obtained from the prepared Ag-LDH powder. Three different wavelengths of a Nd:YAG laser (266, 532 and 1064 nm) working at a repetition rate of 10 Hz were used. X-Ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), and secondary ions mass spectrometry (SIMS) were used to investigate the structure, surface morphology and composition of the deposited films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号