首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Results on time-resolved study of GaN photoluminescence (PL) in a power density range from 0.5 mW/cm2 under CW excitation by ultraviolet light emitting diode (UV LED) to 1 GW/cm2 under pulsed excitation by YAG:Nd laser in the temperature range from 8 to 300 K are presented. Measurements of PL response in the frequency domain by using amplitude-modulated emission of a UV LED as well as time-resolved PL measurements using a streak camera and light-induced transient grating technique have been used in the study. Yellow luminescence (YL) intensity increases with increasing temperature up to 120 K and faster components in YL decay switch to slower components with increasing temperature under UV LED excitation. At low carrier densities, the trapping decreases the carrier lifetime below 250 ps, while the carrier lifetime in the same GaN sample under excitation ensuring saturation of the traps equals 2 ns.  相似文献   

2.
The features and results of X-ray diffraction analysis of GaN films are presented. The films are grown by metalorganic vapor-phase epitaxy on c-plane sapphire substrates using GaN or AlN nucleation layers deposited at a low temperature. Measurements of the twist angle and concentrations of Al x Ga1-x N solid solutions are discussed in detail.  相似文献   

3.
Metal-organic chemical vapor deposition (MOCVD) grown n-type Gallium nitride (GaN) has been irradiated with 100 MeV Ni9+ ions at room temperature. Atomic force microscopy (AFM) images show the nano-clusters' formation upon irradiation and the irradiated GaN surface roughness increases with the increasing ion fluences. High-resolution X-ray diffraction (HR-XRD) analysis reveals the formation of Ga2O3 due to the interface mixing of GaN/Al2O3 upon irradiation. FWHM values of GaN (0 0 0 2) increases due to the lattice disorder. Photoluminescence studies show reduced band edge emission and yellow luminescence (YL) intensity with the increasing ion fluences. Change in the band gap energy between 3.38 and 3.04 eV was measured by UV-visible optical absorption spectrum on increasing the ion fluences.  相似文献   

4.
Silicon and silicon nitride surfaces have been successfully terminated with carboxylic acid monolayers and investigated by atomic force microscopy (AFM) and scanning near-field optical microscopy (SNOM). On clean Si surface, AFM showed topographical variations of 0.3-0.4 nm while for the clean Si3N4 surface the corrugation was around 3-4 nm. After material deposition, the corrugation increased in both samples with a value in topography of 1-2 nm for Si and 5-6 nm for Si3N4. The space distribution of specific chemical species was obtained by taking SNOM reflectivity at several infrared wavelengths corresponding to stretch absorption bands of the material. The SNOM images showed a constant contribution in the local reflectance, suggesting that the two surfaces were uniformly covered.  相似文献   

5.
Electrical performance of gallium nitride nanocolumns   总被引:1,自引:0,他引:1  
The electrical characterization of gallium nitride (GaN) nanocolumns with a length up to 1 μm and a diameter of about 30–80 nm grown on doped silicon is a challenge for nano analytics. To determine the conductivity of these nanocolumns, IV characteristics were recorded by atomic force microscopy (AFM). To measure the conductivity of a single nanocolumn, a conductive AFM tip was placed at the top of the nanocolumn. The measured current/voltage characteristic of a single nanocolumn shows the typical performance of a Schottky contact, which is caused by the contact between the metallic AFM tip and the semiconductor material of the nanocolumn. The height of the Schottky barrier is dependent on the work function of the AFM tip metal used. The linear part of the curve was used to calculate the differential resistance, which was found to be about 13 Ω cm and slightly dependent on the diameter.  相似文献   

6.
邢艳辉  韩军  邓军  李建军  沈光地 《物理学报》2009,58(4):2644-2648
采用金属有机物化学淀积技术在不同倾角(0°—03°)的蓝宝石衬底上外延n型GaN.通过原子力显微镜观察到n型GaN均呈台阶流生长模式,02°和03°倾角衬底的n型GaN表面台阶朝向相同、分布均匀,明显地看到在0°倾角衬底的n型GaN表面由台阶重构直接导致的台阶朝向随机分布、疏密不匀的形貌.电子背散射分析表明,在0°倾角衬底的n型GaN外延层的应力随外延厚度增加而增加,而02°和03°倾角衬底的n型GaN外延层的应力没有明显的变化.电学和光学特性研究表明,02°和03°倾角衬底的n型GaN有较高的电子浓度和较低的黄光带与近带边强度之比. 关键词: 金属有机物化学淀积 氮化物 原子力显微镜 光致发光  相似文献   

7.
The effect of nitrogen ion implantation on the nanomechanical properties of single crystal Si was evaluated by means of a conventional Vickers indentation and nanoindentation tests. The images of Si surfaces before and after nitrogen implantation were observed and their average surface roughnesses were measured by an atomic force microscope (AFM), while the changes in the morphology and microstructure of the single crystal Si by N implantation were examined by field emission scanning electron microscope (SEM) and X-ray diffractometer (XRD). In addition, the hydrophilic/hydrophobic surface property of the N-doping Si film was determined from the measurement of water contact angle by the sessile drop technique. Furthermore, the effects of the doping energy on the surface contact angle and the surface roughness and the Vickers hardness of the film are also investigated.  相似文献   

8.
R. Aoki  N. Misawa  T. Urisu  T. Ogino 《Surface science》2007,601(21):4915-4921
We have studied effects of surface morphology on immobilization of protein molecules using step-controlled sapphire surfaces. Preferential adsorption of avidin molecules on the step edges was observed on the single-stepped sapphire surface. A randomly-stepped sapphire surface was found to be suitable for high-density immobilization of protein molecules. These results indicate atomic scale structures of the substrate surface influence the adsorption efficiency of the proteins. By using an atomic force microscopy (AFM) equipped with a biotin-modified cantilever, we have confirmed that the immobilized avidin molecules on the substrates keep their biological activity. This means that the ligand-receptor interaction can be detected using the phase image mode of a standard AFM.  相似文献   

9.
10.
Morphology of high-vacuum deposited rubrene thin films on the annealed (0 0 0 1) vicinal sapphire surfaces was studied by atomic force microscopy in non-contact mode. Atomic force microscopy images of rubrene thin films indicate that a regular array of steps on the sapphire surface acts as a template for the growth of the arrays of rubrene nanosize wires. To further demonstrate that morphological features of a substrate are crucial in determining the morphology of rubrene layers we have grown rubrene on the sapphire surfaces that were characterized by the terrace-and-step morphology with islands. We have found preferential nucleation of rubrene molecules at the intersection between a terrace and a step, as well as around the islands located on terraces.  相似文献   

11.
Bright field microscopy and atomic force microscopy techniques are used to investigate morphological properties of synthetic eumelanin, obtained by oxidation of l-DOPA solution, deposited on glass and mica substrates. Deposits of eumelanin are characterized by aggregates with different shape and size. On a micrometric scale, filamentous as well as granular structures are present on glass and mica substrates, with a larger density on the former than on the latter. On a nanometric scale, filamentous aggregates, several microns long and about 100 nm wide and high, and granular aggregates, ∼50 nm high and 100 nm wide, are found on both substrates, whereas point-like deposits less than 10 nm high and less than 50 nm wide are found on mica substrate. Dynamic light scattering measurements and atomic force microscopy images support the evidence that eumelanin presents only nanometric point-like aggregates in aqueous solution, whereas such nanoaggregates organize themselves according to granular and filamentous structures when deposition occurs, as a consequence of interactions with the substrate surface.  相似文献   

12.
High-temperature failure of GaN LEDs related with passivation   总被引:1,自引:0,他引:1  
This paper analyses the thermally-activated failure mechanisms of GaN LED test-structures related with the presence of a hydrogen rich SiN passivation layer, by comparing the electrical and optical behaviour of samples with and without passivation during thermal stress. The analysis was carried out by means of electroluminescence, cathodoluminescence, emission microscopy and current–voltage measurements. Thermal treatment induced degradation only on the samples with passivation: identified degradation modes were an efficiency decrease exponential in time, emission crowding, and a forward voltage increase. On the other side, thermal treatment did not change the behaviour of the LEDs without passivation. An interpretation for the degradation of the passivated samples is the following: as a consequence of passivation deposition, a considerable amount of hydrogen is incorporated in the passivation layer. Heating at 250 C allows this hydrogen to interact with the LED surface, thus worsening the transport properties of p-GaN and of the p-ohmic contact, and then the current and emission distribution, inducing the observed degradation and emission crowding. The activation energy of the degradation process was found to be equal to 1.3 eV. Comparison between spectral electroluminescence and cathodoluminescence measurements shows how the mechanism mentioned above is not the only ageing cause and the thermal worsening of QW confinement and/or the creation of nonradiative centers possibly contribute to the LED damage.  相似文献   

13.
14.
The photorefractive effect was observed in Fe-doped semi-insulating GaN. We measured the two-beam coupling constant and the grating formation time as a function of pump intensity at a wavelength of 458 nm in reflection geometry. The photorefractive gain coefficient was 0.39 cm−1, and the grating formation time was 7 ms at a pump intensity of 1.0 W/cm2. Besides the refractive index grating, the contribution of an absorption grating was also observed in a two-wave mixing experiment. The coupling constant of the absorption grating was negative and increased with the pump intensity. The origin of the absorption grating was attributed to light-intensity-dependent photochromism.  相似文献   

15.
InN films have been grown by plasma-assisted molecular beam epitaxy (PAMBE) and characterized by various technologies. It was found that the structural, optical and electrical properties can be drastically improved by raising growth temperature from 440 to 525 °C. Grainy morphology was found in the grain size was found in atomic force microscope images. The large grain size was about 360 nm for a film grown at 525 °C. These films exhibited Wurtzite structure with a c/a ratio ranging from 1.59 to 1.609. The dislocation densities estimated by X-ray diffraction techniques closely agreed with those analyzed by plan-view transmission electron microscopy. Photoluminescence (PL) studies confirmed near band-to-band transitions and the narrowest low-temperature PL peak width was found to be 24 meV at 0.666 eV. Carrier concentrations decreased from 1.44×1019 to 1.66×1018 cm−3 and Hall mobility increased from 226 to 946 cm2 V−1 s−1 as the growth temperature is progressively increased from 440 to 525 °C. Raman spectra also indicated improved crystal quality as the growth temperature was raised.  相似文献   

16.
We investigated micro- and nano-fabrication of wide band-gap semiconductor gallium nitride (GaN) using a femtosecond (fs) laser. Nanoscale craters were successfully formed by wet-chemical-assisted fs-laser ablation, in which the laser beam is focused onto a single-crystal GaN substrate in a hydrochloric acid (HCl) solution. This allows efficient removal of ablation debris produced by chemical reactions during ablation, resulting in high-quality ablation. However, a two-step processing method involving irradiation by a fs-laser beam in air followed by wet etching, distorts the shape of the crater because of residual debris. The threshold fluence for wet-chemical-assisted fs-laser ablation is lower than that for fs-laser ablation in air, which is advantageous for improving fabrication resolution since it reduces thermal effects. We have fabricated craters as small as 510 nm by using a high numerical aperture (NA) objective lens with an NA of 0.73. Furthermore, we have formed three-dimensional hollow microchannels in GaN by fs-laser direct-writing in HCl solution.  相似文献   

17.
We studied the atomic assembly mechanisms of non-polar GaN films by the molecular dynamics method as a function of the N:Ga flux ratio at a fixed adatom energy on non-polar planes. Our study revealed that high quality crystal growth occurred only when off-lattice atoms (which are usually associated with amorphous embryos or defect complexes) formed during deposition were able to move to unoccupied lattice sites by thermally activated diffusion processes, which attests to the experimental difficulties in obtaining smooth surfaces due to dense stacking faults lying in non-polar GaN. Furthermore, surface structures on different planes played an important role. We further suggested favorable conditions for growing high quality GaN films and nano-structures along non-polar directions.  相似文献   

18.
19.
Soft X-ray magnetic circular dichroism (XMCD) have been measured for the Ga0.97Cr0.03N film grown by NH3-assisted molecular beam epitaxy. Temperature dependence of the XMCD intensity was well described by the Curie–Weiss law. Although the sample showed ferromagnetic behavior at least up to room temperature, the ferromagnetic component could not be detected by the XMCD measurement.  相似文献   

20.
Surface preparation procedures for indium gallium nitride (InGaN) thin films were analyzed for their effectiveness for carbon and oxide removal as well as for the resulting surface roughness. Aqua regia (3:1 mixture of concentrated hydrochloric acid and concentrated nitric acid, AR), hydrofluoric acid (HF), hydrochloric acid (HCl), piranha solution (1:1 mixture of sulfuric acid and 30% H2O2) and 1:9 ammonium sulfide:tert-butanol were all used along with high temperature anneals to remove surface contamination. X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) were utilized to study the extent of surface contamination and surface roughness, respectively. The ammonium sulfide treatment provided the best overall removal of oxygen and carbon. Annealing over 700 °C after a treatment showed an even further improvement in surface contamination removal. The piranha treatment resulted in the lowest residual carbon, while the ammonium sulfide treatment leads to the lowest residual oxygen. AFM data showed that all the treatments decreased the surface roughness (with respect to as-grown specimens) with HCl, HF, (NH4)2S and RCA procedures giving the best RMS values (∼0.5-0.8 nm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号