首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this work, porous titania was prepared on bulk Ti by chemical oxidation, and then nanostructured silver (Ag) was deposited on titania surface by ion beam sputtering. After annealing treatment, Ag/TiO2 composites were characterized using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results indicated that a nano-porous titania layer with mean pore size of 150 nm and thickness of 1 μm was formed by chemical oxidation at 80 °C for 45 min. There were three Ag species (Ag (0), Ag (1+), and Ag (2+)) on composites surface after annealing treatment, and metallic Ag content achieved maximum value with annealing temperature of 500 °C in air. Ag showed high thermal stability being partly attributed to the inhibiting the diffusion of Ag by the underlying porous titania.  相似文献   

2.
Ag-doped mesoporous titania was synthesized via a combined sol-gel process with surfactant-assisted templating method using cetyltrimethyl ammonium bromide (CTAB) as the structure-directing agent. The prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption-desorption measurements (BET) and X-ray photoelectron spectroscopy (XPS). The photocatalytic activity of the samples was determined by degradation of model contaminant water of phenol in aqueous solution. Results showed that different amounts of Ag-doping had different effects on the crystal phase structure and photocatalytic activity of the samples. The sample with 0.5% Ag doping shows the highest photocatalytic activity, which is 2.3 times that of the undoped mesoporous titania.  相似文献   

3.
The controllable synthesis and characterization of novel thermally stable silver-based particles are described. The experimental approach involves the design of thermally stable nanostructures by the deposition of an interfacial thick, active titania layer between the primary substrate (SiO2 particles) and the metal nanoparticles (Ag NPs), as well as the doping of Ag nanoparticles with an organic molecule (Congo Red, CR). The nanostructured particles were composed of a 330-nm silica core capped by a granular titania layer (10 to 13 nm in thickness), along with monodisperse 5 to 30 nm CR-Ag NPs deposited on top. The titania-coated support (SiO2/TiO2 particles) was shown to be chemically and thermally stable and promoted the nucleation and anchoring of CR-Ag NPs, which prevented the sintering of CR-Ag NPs when the structure was exposed to high temperatures. The thermal stability of the silver composites was examined by scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). Larger than 10 nm CR-Ag NPs were thermally stable up to 300 °C. Such temperature was high enough to destabilize the CR-Ag NPs due to the melting point of the CR. On the other hand, smaller than 10 nm Ag NPs were stable at temperatures up to 500 °C because of the strong metal-metal oxide binding energy. Energy dispersion X-ray spectroscopy (EDS) was carried out to qualitatively analyze the chemical stability of the structure at different temperatures which confirmed the stability of the structure and the existence of silver NPs at temperatures up to 500 °C.  相似文献   

4.
In this paper, an Au/Ag bimetallic hollow nanostructure was obtained by using SiO2 nanospheres as sacrificial templates. The nanostructure was fabricated via a three steps method. SiO2@Au nanospheres were first synthesized by the layer-by-layer technique, and then they were coated with a layer of Ag particles, finally, the Au/Ag bimetallic hollow nanospheres were obtained by dissolution of the SiO2 core by exposure in HF solution. Several characterizations, such as transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and UV visible absorption spectroscopy were used to investigate the prepared nanostructures. The effectiveness of these Au/Ag bimetallic hollow nanospheres as substrates toward surface-enhanced Raman scattering (SERS) detection was evaluated by using rhodamine 6G (R6G) as a probe molecule. We show that such Au/Ag bimetallic hollow nanospheres structure films which consisting of larger interconnected aggregates are highly desirable as SERS substrates in terms of high Raman intensity enhancement. The Au/Ag bimetallic hollow nanostructured aggregate, interconnected nanostructured aggregate and nanoscale roughness are important factors responsible for this large SERS enhancement ability.  相似文献   

5.
Gold and gold-silver nanoparticles prepared by flame spray pyrolysis (FSP) were characterized by electron microscopy, in situ X-ray absorption spectroscopy (XANES and EXAFS), X-ray diffraction (XRD) and their catalytic activity in CO oxidation. Within this one-step flame-synthesis procedure, precursor solutions of dimethyl gold(III) acetylacetonate and silver(I) benzoate together with the corresponding precursor of the silica, iron oxide or titania support, were sprayed and combusted. In order to prepare small metal particles, a low noble metal loading was required. A loading of 0.1-1 wt.% of Au and Ag resulted in 1-6 nm particles. The size of the noble metal particles increased with higher loadings of gold and particularly silver. Both scanning transmission electron microscopy (STEM) combined with energy dispersive X-ray spectroscopy (EDXS) and X-ray absorption spectroscopy (XAS) studies proved the formation of mixed Au-Ag particles. In case of 1% Au-1% Ag/SiO2, TEM combined with electron spectroscopic imaging (ESI) using an imaging filter could be used in addition to prove the presence of silver and gold in the same noble metal particle. CO oxidation in the presence of hydrogen was chosen as a test reaction sensitive to small gold particles. Both the influence of the particle size and the alloying of gold and silver were reflected in the CO oxidation activity.  相似文献   

6.
Copper-doped titania with variable Cu/Ti ratios have been prepared via a simple aqueous-phase method at 85 °C. The obtained products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and UV-vis absorption spectra analysis. The photocatalytic properties of the products were tested by photocatalytic degradation of aqueous brilliant red X-3B solution. The results showed that the sample with 2% copper doping has the best photocatalytic activity, which is 3 times that of undoped rutile titania. The effect of the doped copper on the structure and property of TiO2 has also been discussed.  相似文献   

7.
In this study, sub-micron sized silica particles were encapsulated with nanosized titania particles using an aqueous TiCl4 solution. The particle size distribution of the synthesized titania particles in the coating layer was estimated to be 10 nm from X-ray powder diffraction and transmission electron microscopy. The thickness of the coating layer ranged from a few nm to about 30 nm from transmission electron microscopy analysis. Zeta potential analysis demonstrated the presence of a titania particle coating layer and the extent of its coverage on the surface of silica particles. X-ray photoelectron spectroscopy analysis also demonstrated that titania particles were successfully deposited on the surface of core silica particles from the chemical shift of binding energies of O 1s, Ti 2p and Si 2p.  相似文献   

8.
Anodic oxidation could be employed to produce crystalline titania films on Ti6Al4 V surfaces for inducing apatite formation in simulated body fluid (SBF). In this work, the effect of further heat treatment on the bioactivity of anodic titania films was researched. The surface constitution, morphology, crystal structure and apatite-forming ability of titania films were characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results indicated the apatite formation on the Ti6Al4 V surfaces could be attributed to abundance of Ti-OH groups formed via anodic oxidation, but subsequent heat treatment would decrease the amount of surface hydroxyl (OH) groups and result in the loss of the apatite-forming ability.  相似文献   

9.
N-doped titania hollow spheres (NTHS) were prepared by a one-pot hydrothermal method using urea as precursor of nitrogen. The prepared hollow spheres were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), Brunauer-Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS) and UV-vis diffuse reflectance spectrum (DRS). The photocatalytic activity of as-prepared titania hollow spheres was determined by degradation of Reactive Brilliant Red dye X-3B (C.I. reactive red 2) under visible light irradiation, and was compared to non-doped titania hollow spheres and commercial P25 titania. Results indicated that the as-prepared NTHS showed highest photocatalytic activity.  相似文献   

10.
In this study, polyurethane/titania (PU/TiO2) nanocomposites were prepared in ultrasonic process and characterized by fourier transform IR spectroscopy (FT-IR), powder X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and infrared emissivity analysis. The TEM and SEM results indicated that the nanoparticles were dispersed homogeneously in PU matrix on nanoscale. TGA-DSC confirmed that the heat stability of the composite was improved. Infrared emissivity study showed that the nanocomposite possessed lower emissivity value than those values of pure polymer and nanoparticles.  相似文献   

11.
Nd-doped titania hollow spheres were prepared using carbon spheres as template and Nd-doped titania nanoparticles as building blocks. The Nd-doped titania nanoparticles were synthesized at low temperature. The prepared hollow spheres were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and UV-vis diffuse reflectance spectrum (DRS). The effects of Nd content on the physical structure and photocatalytic activities of doped titania hollow sphere samples were investigated. Results showed that there was an optimal Nd-doped content (3.9 at.%) for the photocatalytic degradation of dye X-3B (C.I. Reactive Red 2). The apparent rate constant of the best one was almost 9 times as that of P25 titania. The mechanism of photocatalytic degradation of dyes under visible light irradiation was also discussed.  相似文献   

12.
Bovine femur bone hydroxyapatite (HA) containing silver (Ag) nanoparticles was synthesized by thermal decomposition method and subsequent reduction of silver nitrate with N,N-dimethylformamide (DMF) in the presence of poly(vinylacetate) (PVAc). The structural, morphological, and chemical properties of the HA–Ag nanoparticles were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). TEM images showed that the Ag nanoparticles with size ranging from 8 to 20 nm and were arranged at the periphery of HA crystals. Bactericidal activity of HA–Ag with different concentration of Ag nanoparticles immobilized on the surface of HA was investigated against gram-positive Staphylococcus aureus (S. aureus, non-MRSA), Methicillin resistant S. aureus (MRSA) and gram-negative Escherichia coli (E. coli) by the disc diffusion susceptibility test. The HA–Ag nanoparticles showed that broad spectrum activity against non-MRSA, MRSA, and E. coli bacterial strains.  相似文献   

13.
The preparation of Ag doped ZnO nanoparticles conducted through the method of laser-induction is presented in this work. The Ag/ZnO nanoparticles attained from various weight percentages of added AgNO3 relative to ZnO were applied under visible-light irradiation for evaluating the heterogeneous photocatalytic degradations of methylene blue (MB) solutions. It was shown that the catalytic behavior of Ag/ZnO nanoparticles in the visible-light range is notably improved through the Ag deposition onto ZnO nanoparticles by the method of laser-induction with a maximum effectiveness of 92% degradation. The properties of the nanoparticles were characterized by the employments of UV-vis spectroscopy (UV-vis), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), and selected-area electron diffraction (SAED).  相似文献   

14.
Highly ordered Ag nanorod arrays were successfully fabricated using a simple chemical deposition method with the assistance of porous alumina membrane (PAM) template. The products were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). Ag+ ions in the PAM nanochannels were reduced by acetaldehyde reagent and resulting in the formation of rod array structures. It is found that the diameter of the Ag nanorods is determined by the PAM template, and the length of the Ag nanorods is depended on the reaction temperature. The growth mechanism of the Ag nanorod arrays is investigated in the study.  相似文献   

15.
Bi-doped hollow titania spheres were prepared using carbon spheres as template and Bi-doped titania nanoparticles as building blocks. The Bi-doped titania nanoparticles were synthesized at low temperature. The prepared hollow spheres were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), UV-vis diffuse reflectance spectrum (DRS) and X-ray photoelectron spectroscopy (XPS). The effects of Bi content on the physical structure and photocatalytic activity of doped hollow titania sphere samples were investigated. Results showed that there was an optimal Bi-doped content (4%) for the photocatalytic degradation of methylene blue (MB).  相似文献   

16.
Monodispersed and core-shell structured ZnO–Ag microspheres were realized by coating the Ag nanoparticles onto the surface of ZnO microspheres via a novel solution method. The obtained materials were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS) and ultraviolet–visible (UV–Vis) absorption measurement. It was shown that face-center-cubic Ag nanoparticles with the mean size of 20 nm were successfully grown on the surface of ZnO microspheres. The absorption band of ZnO–Ag core-shell microspheres showed a large redshift comparing to pure Ag nanoparticles, indicating the strong interfacial interaction between ZnO and Ag. The effects of Ag coating thickness on the structure, morphology and optical absorption of ZnO–Ag core-shell microspheres were investigated. The discussion on the growth process of ZnO–Ag core-shell microspheres revealed the important role of Sn2+. This approach was simple, mild and readily scaled up, affording a simple method for the synthesis of size-tunable inorganic-metal core-shell nanostructures.  相似文献   

17.
This paper describes a new approach to the synthesis of Ag nanorods. A solvothermal method was used to make Ag nanoparticles inside anodic aluminum oxide (AAO) templates. The nanoparticles were then annealed at 300 °C to produce Ag nanorods. The size of AAO templates, which is focused on in this study, would determine the diameter of Ag nanorods. The product was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In this study, a nanorod growth mechanism is deduced, and understanding of the growth of nanorods inside AAO templates is furthered. This work demonstrates that it is possible to make crystalline nanorods that the size can be varied.  相似文献   

18.
以P123为模板,以钛酸四正丁酯、硝酸银和硫脲为原料采用模板法制备了一系列硫和银共掺杂介孔TiO2光催化材料.利用SEM、XRD、BET和紫外-可见光谱等技术对其形貌、晶体结构及表面结构、光吸收特性等进行了表征.以甲基橙溶液的光催化降解为模型反应,考察了不同掺杂量的样品在紫外和可见光下的光催化性能.结果表明,用模板法制备的共掺杂介孔TiO2光催化材料在紫外和可见光条件下较纯介孔TiO2和单掺杂介孔TiO2对甲基橙溶液具有更好的光催化降解效果, 且硫和银的掺杂量及样品焙烧温度显著影响该材料的催化性能.当硫掺杂量为2mol%和银掺杂量为1mol%,在500 oC 焙烧2 h所得光催化材料的催化性能最佳,4 h即可使甲基橙的降解率达98.8%,重复使用4次仍可使甲基橙的降解率保持在87.5%以上  相似文献   

19.
Iron(III)-doped titania nanoparticles were prepared by modified sol-gel method using titanium (IV) butoxide and inorganic precursor iron(III) nitrate nonahydrate. Spectroscopic measurements show the onset of the band-gap transition to be red-shifted (~λ = 475 nm) to the visible region with increasing iron(III) ion content. Characterizations were preformed by X-ray diffractometry, electron microscopy, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. Photocatalysis experiments were performed with dye pollutant sulforhodamine-B in aqueous environment. Direct photocatalytic effect was observed in the dye degradation experiments when irradiated with visible light into the band gap of the iron(III)-doped titania.  相似文献   

20.
In this paper, data concerning the effect of pH on the morphology of Ag–TiO2 nanocomposite during photodeposition of Ag on TiO2 nanoparticles is reported. TiO2 nanoparticles prepared by sol–gel method were coated with Ag by photodeposition from an aqueous solution of AgNO3 at various pH levels ranging from 1 to 10 in a titania sol, under UV light. The as-prepared nanocomposite particles were characterized by UV–vis absorption spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), and N2 adsorption/desorption method at liquid nitrogen temperature (−196 °C) from Brunauer–Emmett–Teller (BET) measurements. It is shown that at a Ag loading of 1.25 wt.% on TiO2, a high-surface area nanocomposite morphology corresponding to an average of one Ag nanoparticle per titania nanoparticle was achieved. The diameter of the titania crystallites/particles were in the range of 10–20 nm while the size of Ag particles attached to the larger titania particles were 3 ± 1 nm as deduced from crystallite size by XRD and particle size by TEM. Ag recovery by photo harvesting from the solution was nearly 100%. TEM micrographs revealed that Ag-coated TiO2 nanoparticles showed a sharp increase in the degree of agglomeration for nanocomposites prepared at basic pH values, with a corresponding sharp decrease in BET surface area especially at pH > 9. The BET surface area of the Ag–TiO2 nanoparticles was nearly constant at around a value of 140 m2 g−1 at all pH from 1–8 with an anomalous maximum of 164 m2 g−1 when prepared from a sol at pH of 4, and a sharp decrease to 78 m2 g−1 at pH of 10.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号