首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study we investigated properties of ZnO thin films deposited on both oxygen-containing substrates and a substrate without oxygen content at various O2/Ar reactant gas ratios. Deposition of ZnO on indium-tin oxide (ITO) resulted in the best crystallinity, whereas the least degree of crystallization was observed from ZnO deposited on glass. All the films were found to have compressive stress, which was relieved by annealing in O2 environment. ZnO films deposited on glass revealed p-type conductivity when prepared at O2/Ar ratio of 0.25 whereas those on SiNx yielded p-type conductivity when prepared at O2/Ar ratio of 4. In addition, shallower oxygen interstitial seemed to be found from films with better crystallinity. The largest shift in binding energy of Zn2p3/2 was observed from ZnO prepared on glass at O2/Ar ratio of 0.25, whereas that of O1s was obtained from ZnO deposited on SiNx at O2/Ar ratio of 4. A model was proposed in terms of O2 diffusion and hydrogen desorption in order to account for the observed property variations depending on substrates and O2/Ar ratios.  相似文献   

2.
The hydrogen doped ZnO (ZnO:H) thin films were deposited on quartz glass substrates by radio frequency magnetron sputtering. The doping characteristics of ZnO:H thin films with varied hydrogen flow ratio were investigated. At low hydrogen flow ratio (H2/(H2+Ar)≤0.02), the ZnO:H thin films exhibited dominant (002) peaks from X-ray diffraction and the lattice constants became smaller. The particles were mainly a columnar structure. The particles’ size became smaller, and the island-like structure appeared on the thin films surface. In addition, the low resistivity properties of ZnO:H thin films was ascribed to the increase of the carriers concentration and carriers mobility; When the hydrogen flow ratio was more than 0.02 (M≥0.02), two absorption bands at 1400–1800 cm?1 and 3200–3900 cm?1 were observed from the FT-IR spectra, which indicated that the ZnO:H thin films had typical Zn–H bonding, O–H bonding (hydroxyl), and Zn–H–O bonding (like-hydroxyl). The scanning electron microscope (SEM) results show that a large number of hydroxyl agglomeration formed an island-like structure on the thin films surface. The absorption peak at about 575 cm?1 in the Raman spectra indicated that oxygen vacancies (VO) defects were produced in the process of high hydrogen doping. In this condition, the low resistivity properties of ZnO:H thin films were mainly due to the increasing electron concentration resulted from VO. Meanwhile, the Raman absorption peaks at approximately 98 cm?1 and 436 cm?1 became weaker, and the (002) XRD diffraction peak quenched and the lattice constants increased, which shows that the ZnO:H thin films no longer presented a typical ZnO hexagonal wurtzite structure. With the increasing of hydrogen flow ratio, the optical transmittance of ZnO:H thin films in the ultraviolet band show a clear Burstein–Moss shift effect, which further explained that electron concentration was increased due to the increasing VO with high hydrogen doping concentration. Moreover, the optical reflectance of the thin films decreased, indicating the higher roughness of the films surface. It was noteworthy that etching effect of H plasma was obvious in the process of heavy hydrogen doping.  相似文献   

3.
Zinc-indium-oxide (ZIO) films were deposited on non-alkali glass substrates by RF superimposed DC magnetron sputtering with a ZIO (9.54 wt% In2O3 content) high-density, sintered target at room temperature. The electrical, structural and optical properties of the ZIO films deposited with different sputtering parameters were examined. The total power for RF superimposed DC magnetron sputtering was 80 W. The RF power ratio in the total sputtering power was changed from 0 to 100% in steps of 25%. The ZIO films deposited with a 100% RF discharge showed the lowest resistivity, 1.28×10−3 Ω cm, due to the higher carrier concentration. The ZIO film deposited at 50% RF power showed a relatively larger grain size and smaller FWHM. XPS suggested an increase in the level of In3+ substitution for Zn2+ in the ZnO lattice with increasing RF/(DC+RF) due to the low damage process. The average transmittance of all ZIO films in the visible light region was >80%. The increasing RF power portion of the total sputtering power led to a broadening of the optical band gap, which was attributed to the increase in carrier density according to Burstein-Moss shift theory.  相似文献   

4.
射频磁控溅射沉积的ZnO薄膜的光致发光中心与漂移   总被引:21,自引:0,他引:21       下载免费PDF全文
利用射频磁控溅射法在n型单晶硅衬底上制备了ZnO薄膜.通过改变源气体中氩气和氧气的流量比制备了具有不同化学计量比的ZnO薄膜,并且将它们在真空中作了加热后处理来研究ZnO薄膜的光致发光特性.这些在常温衬底上沉积的薄膜可发出强的蓝光,其峰位会随氧流量的减少而发生红移.从导带底到锌缺陷形成的受主能级之间的跃迁可能是产生蓝光发射的原因. 关键词: ZnO薄膜 光致发光 退火 蓝光发射  相似文献   

5.
Titanium oxynitride (TiNxOy) films were deposited on polyethylene terephthalate (PET) substrates by means of a reactive radio frequency (RF) magnetron sputtering system in which the power density and substrate bias were the varied parameters. Experimental results show that the deposited TiNxOy films exhibited an amorphous or a columnar structure with fine crystalline dependent on power density. The deposition rate increases significantly in conjunction as the power density increases from 2 W/cm2 to 7 W/cm2. The maximum deposition rate occurs, as the substrate bias is −40 V at a certain power densities chosen in this study. The film's roughness slightly decreases with increasing substrate bias. The TiNxOy films deposited at power densities above 4 W/cm2 show a steady Ti:N:O ratio of about 1:1:0.8. The water vapor and oxygen transmission rates of the TiNxOy films reach values as low as 0.98 g/m2-day-atm and 0.60 cm3/m2-day-atm which are about 6 and 47 times lower than those of the uncoated PET substrate, respectively. These transmission rates are comparable to those of DLC, carbon-based and Al2O3 barrier films. Therefore, TiNxOy films are potential candidates to be used as a gas permeation barrier for PET substrate.  相似文献   

6.
李阳平  刘正堂  刘文婷  闫峰  陈静 《物理学报》2008,57(10):6587-6592
用射频磁控反应溅射法在ZnS衬底上制备了GeC薄膜,研究了工艺参数对Ge靶溅射及GeC薄膜红外透射性能的影响.衬底温度较低时GeC薄膜中含有H,形成了CH2,CH3,Ge-CH3等,使薄膜产生红外吸收;随衬底温度升高,薄膜红外吸收明显减小.靶基距、射频功率、Ar:CH4气体流量比、总气压对靶面中毒及溅射影响较大,但对GeC薄膜红外吸收影响较小.靶面中毒严重时,所制备无氢GeC薄膜附着性能差,随靶中毒减弱薄膜附着性能变好.优化工艺后,在ZnS衬底上制备了附着性能良好的无氢GeC薄膜,其折射率约为1.78,薄膜中C的含量比Ge的大,二者主要形成了C—Ge键.所制备的GeC/GaP红外增透保护膜系对ZnS衬底有良好的增透效果. 关键词: GeC薄膜 红外透射光谱 射频磁控溅射 XPS  相似文献   

7.
N-doped ZnO films were produced using N2 as N source by metal-organic chemical vapor deposition (MOCVD) system which has been improved with radio-frequency (RF)-assisted equipments. The data of secondary ion mass spectroscopy (SIMS) indicate that the concentration of N in N-doped ZnO films is around 5 × 1020 cm−3, implying that sufficient incorporation of N into ZnO can be obtained by RF-assisted equipment. On this basis, the structural, optical and electrical properties of Al-N codoped ZnO films were studied. Then, the effect of RF power on crystal quality, surface morphologies, optical properties was analyzed using X-ray diffraction, atomic force microscopy and photo-luminescence methods. The results illustrate that the RF plasma is the key factor for the improvement of crystal quality. Then the observation of A0X recombination associated with NO acceptor in low-temperature PL spectrum proved that some N atoms have occupied the positions of O atoms in ZnO films. Hall measurements shown that p-type ZnO film deposited on quartz glasses was obtained when RF power was 150 W for the Al-N codoped ZnO films, while the resistivity of N-doped ZnO films was rather high. Compared with the Al-doped ZnO film, the obviously increased resistivity of codoped films indicates that the formation of NO acceptors compensate some donors in ZnO films effectively.  相似文献   

8.
江美福  宁兆元 《物理学报》2004,53(9):3220-3224
采用射频反应磁控溅射法用高纯石墨作靶、三氟甲烷(CHF3)和氩气(Ar)作源气体制 备了氟化类金刚石(FDLC)薄膜,通过XPS光谱结合拉曼光谱、红外透射光谱和紫外 可见光光谱研究了源气体流量比等工艺条件对薄膜中键结构、sp2/sp3杂化比以及光学带隙等性能的影响.结果表明在低功率(60W)、高气压(2.0Pa)和适当的流量比(Ar/CHF3=2∶ 1)下利用射频反应磁控溅射法可制备出氟含量高且具有较宽光学带隙和超低介电常数的FDLC薄膜. 关键词: 反应磁控溅射 氟化类金刚石薄膜 红外透射光谱 XPS光谱  相似文献   

9.
This paper reports a study of reactive ion etching (RIE) of n-ZnO in H2/CH4 and H2/CH4/Ar gas mixtures. Variables in the experiment were gas flow ratios, radio-frequency (rf) plasma power, and total pressure. Structural and electrical parameters of the etched surfaces and films were determined. Both the highest surface roughness and highest etching rate of ZnO films were obtained with a maximum rf power of 300 W, but at different gas flow ratios and working pressures. These results were expected because increasing the rf power increased the bond-breaking efficiency of ZnO. The highest degree of surface roughness was a result of pure physical etching by H2 gas without mixed CH4 gas. The highest etching rate was obtained from physical etching of H2/Ar species associated with chemical reaction of CH4 species. Additionally, the H2/CH4/Ar plasma treatment drastically decreased the specific contact and sheet resistance of the ZnO films. These results indicated that etching the ZnO film had roughened the surface and reduced its resistivity to ohmic contact, supporting the application of a roughened transparent contact layer (TCL) in light-emitting diodes (LEDs).  相似文献   

10.
玉米蛋白质基底上射频磁控溅射法制备ZnO薄膜   总被引:2,自引:2,他引:0       下载免费PDF全文
采用射频磁控溅射方法在蛋白质基底上成功地制备了ZnO薄膜,研究了不同靶基距、氩氧比和溅射功率条件对ZnO薄膜性质的影响。结果表明,较小的靶基距有助于ZnO薄膜的c轴择优取向生长。我们还发现,沉积于玉米蛋白质基底的ZnO薄膜存在不同程度的张应力,当Ar/(Ar+O2)为0.7时,ZnO薄膜内的张应力最小。ZnO近带边发光峰有不同程度的红移,我们认为,这是由于晶界势垒和氧空位Vo造成的。随着溅射功率的增大,薄膜生长速率显著加快,晶粒尺寸增大,ZnO的近带边发光峰位逐渐趋向于理论值。  相似文献   

11.
The aim of this study is to find the effects of oxygen flow rate during manufacturing on the sensitivity of SnO2 (tin oxide) thin films to ethanol (C2H5OH). In this study, an RF sputtering process was employed to fabricate the SnO2 thin films. The SnO2 was deposited on gold electrode silicon microchips. A target composed of SnO2 doped with 1 at.% Li was used with a working pressure of 3 mTorr. The RF power was fixed at 150 W. The reaction gas was a mixture of argon and oxygen. The total flow rate was constant at 50 sccm with the O2/Ar ratio varying from 0.2 to 0.8. An annealing heat treatment was employed at 400 °C for 1 h to stabilize the properties of the films. The sensitivity of the film to ethanol was tested by placing the micro-reactor device on a hot plate, heated to 300 °C, and measuring the variation of electrical resistivity of the film with and without the presence of ethanol. The results show that an O2/Ar flow ratio of 0.2 produces films with the highest ethanol sensitivity. Before heat treating, the ethanol sensitivity was 126. After heat treating at 400 °C for 1 h, the sensitivity decreased to 104.  相似文献   

12.
ZnO active layers on ZnO buffer layers were grown at various O2/O2 + Ar flow-rate ratios by using radio-frequency magnetron sputtering. Atomic force microscopy images showed that the surface roughnesses of the ZnO active layers grown on ZnO buffer layers decreased with decreasing O2 atmosphere, indicative of an improvement in the ZnO surfaces. The type of the ZnO active layer was n-type, and the resistivity of the layer increased with increasing O2 atmosphere. Photoluminescence spectra from the ZnO active layers grown on the ZnO buffer layers showed dominant peaks corresponding to local levels in the ZnO energy gap resulting from oxygen vacancies or interstitial zinc vacancies, and the peak positions changed significantly with the O2/O2 + Ar flow rate. These results can help improve understanding of the dependences of the surface and the optical properties on the O2/O2 + Ar ratio for ZnO thin films grown on ZnO buffer layers.  相似文献   

13.
Ti-doped ZnO (ZnO:Ti) thin films were deposited on the glass and Si substrates using radio frequency reactive magnetron sputtering. The effects of substrate on the microstructures and optical properties of ZnO:Ti thin films were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and a fluorescence spectrophotometer. The structural analyses of the films indicated that they were polycrystalline and had a hexagonal wurtzite structure on different substrates. When ZnO:Ti thin film was deposited on Si substrate, the film had a c-axis preferred orientation, while preferred orientation of ZnO:Ti thin film deposited on glass substrate changed towards (1 0 0). Finally, we discussed the influence of the oxygen partial pressures on the structural and optical properties of glass-substrate ZnO:Ti thin films. At a high ratio of O2:Ar of 18:10 sccm, the intensity of (0 0 2) diffraction peak was stronger than that of (1 0 0) diffraction peak, which indicated that preferred orientation changed with the increase of O2:Ar ratios. The average optical transmittance with over 93% in the visible range was obtained independent of the O2:Ar ratio. The photoluminescence (PL) spectra measured at room temperature revealed four main emission peaks located at 428, 444, 476 and 527 nm. Intense blue-green luminescence was obtained from the sample deposited at a ratio of O2:Ar of 14:10 sccm. The results showed that the oxygen partial pressures had an important influence for PL spectra and the origin of these emissions was discussed.  相似文献   

14.
李勇  孙成伟  刘志文  张庆瑜 《物理学报》2006,55(8):4232-4237
通过反应磁控溅射过程中的等离子体发射光谱,研究了制备ZnO薄膜的沉积温度、氧气流量比例R=O2/(O2+Ar)对Zn和O原子发射光谱的影响,并结合ZnO薄膜的结构和物理性能,探讨了沉积温度在ZnO薄膜生长中的作用.研究结果显示:当R≥0.75%时, Zn的溅射产额随R的增加基本呈线性下降规律.当R介于10%—50%时,氧含量的变化相对平缓,有利于ZnO薄膜生长的稳定性控制.Zn原子发射光谱强度随沉积温度的变化可以分为三个阶段.当沉积温度低于250℃时,发射光谱强 关键词: ZnO 薄膜生长 反应磁控溅射 等离子体发射光谱  相似文献   

15.
Hydrogenated microcrystalline silicon films were deposited by glow discharge decomposition of SiH4 diluted in mixed gas of Ar and H2. By investigating the dependence of the film crystallinity on the flow rates of Ar and H2, we showed that the addition of Ar in diluted gas markedly improves the crystallinity due to an enhanced dissociation of SiH4. The infrared-absorption spectrum reveals that the fraction of SiH bonding increases with increasing the rate ratio of H2/(H2 + Ar). The surface roughness of the films increases with increasing the flow rate ratio of H2/(H2 + Ar), which is attributed to the decrease of massive bombardment of Ar ions in the plasma. Refractive index and absorption coefficient of the films were obtained by simulating the optical transmission spectra using a modified envelope method. Electrical measurements of the films show that the dark conductivity increases and the activation energy decreases with the ratio of H2/(H2 + Ar). A reasonable explanation is presented for the dependence of the microstructure and optoelectronic properties on the flow rate ratio of H2/(H2 + Ar).  相似文献   

16.
In this investigation ZnFe2O4 thin films were fabricated by RF magnetron sputtering and the magnetic behavior was examined under the influence of the growth conditions in three types of atmospheres, using near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) and vibrating sample magnetometry (VSM). XPS revealed that films under an Ar/O2 ratio 1:2 and 2:1 have Fe/Zn atomic ratios similar to the Fe/Zn stoichiometric composition; while the films deposited in pure Ar atmosphere, showed a formation of Fe ions (Fe0) reduced by Ar ion sputtering. VSM revealed an enhancing of the saturation magnetization for the ZFO in thin films unlike the samples in bulk, suggesting that Fe ions migrate to A sites and the interaction JAB dominates the magnetic properties instead of JBB interaction.  相似文献   

17.
Behavior of oxygen in sputtering deposited ZnO films through thermal annealing and its effect on sheet resistance of the films were investigated. The crystallinities of the ZnO film were improved by post-deposition annealing in vacuum. However, the sheet resistance of ZnO film was dramatically decreased after post-deposition annealing in vacuum at more than 300 °C, while O2 desorbed from the film. The oxygen vacancies which acted as donors were formed by the thermal annealing in vacuum. The sheet resistance of the films was recovered by annealing in oxygen ambient. In this paper, 18O2 gas as an oxygen isotope was used as the annealing ambient in order to distinguish from 16O, which was constituent atom of the ZnO films. SIMS analysis revealed that 18O diffused into the ZnO film from the top surface by 18O2 annealing. Therefore oxygen vacancies formed by the post-deposition annealing in vacuum could be compensated by the annealing in oxygen ambient.  相似文献   

18.
In this study, porous silicon (PS) templates were formed by electrochemical anodization on p-type (100) silicon wafer and ZnO films were deposited on PS substrates using radio frequency (RF) reactive magnetron sputtering technique. The effects of oxygen partial pressures of growth ZnO films and annealing ambience on the microstructure and photoluminescence (PL) of the ZnO/PS nanocomposite films were systematically investigated by X-ray diffraction and fluorescence spectrophotometry. The results indicated that all ZnO/PS nanocomposite films were polycrystalline in nature with a hexagonal wurtzite structure and the (002) oriented ZnO films had the best crystal quality under O2:Ar ratio of 10:10 sccm and annealing in vacuum. PL measurements at room temperature revealed that ZnO/PS nanocomposite systems formed a broad PL band including the blue and green emissions from ZnO and red-orange emission from the PS. The mechanism and interpretation of broadband PL of the nanocomposites were discussed in detail using an oxygen-bonding model in PS and a native defects model in ZnO.  相似文献   

19.
狄国庆 《物理学报》2011,60(3):38101-038101
在室温条件下利用溅射Ta2O5靶材的方法制备了Ta2O5薄膜,并采用将薄膜两侧的反射率光谱进行比较的简便方法分析评估薄膜的光吸收,发现溅射制备薄膜的额外光吸收源是溅射引起的缺氧形成的,选择适当的溅射功率和含氧比例的工作气体能有效地消除这些缺陷、不用任何加温处理就可制备得到表面平坦和高致密度的高品质Ta2O5薄膜. 关键词: 2O5薄膜')" href="#">Ta2O5薄膜 光吸收 表面形貌 磁控溅射  相似文献   

20.
采用射频反应磁控溅射方法,在Si(001)基片上制备了具有高c轴择优取向的ZnO薄膜.利用原子力显微镜、X射线衍射、透射电子显微镜和透射光谱分析技术,对不同工作气压下合成的ZnO薄膜的表面形貌、微观结构和光学性能进行表征,研究了工作气压对ZnO薄膜的结晶性能以及生长行为的影响.研究结果显示:对于Ar/O2流量比例接近1∶1的固定比值下,ZnO薄膜的生长行为主要取决于成膜空间中氧的密度,临界工作气压介于0.5—1.0 Pa之间.当工作气压小于临界值时,ZnO薄膜的成核密度较高,且随工作气压的变化明显,ZnO的生长行为受控于氧的密度,属于氧支配的薄膜生长;当工作气压大于临界值以后,ZnO薄膜的成核密度基本保持不变,Zn原子的数量决定薄膜的生长速率;在0.1—5.0 Pa的工作气压范围内,均可获得高度c轴取向的ZnO薄膜,但工作气压的变化改变着ZnO晶粒之间的界面特征和取向关系.随着工作气压的增加,ZnO晶粒之间的界面失配缺陷减少,但平面织构特征逐渐消失,三叉晶界的空洞逐渐扩大,薄膜的密度下降,折射率减小. 关键词: ZnO薄膜 磁控溅射 表面形貌 微观结构 光学性能  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号