首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
康朝阳  唐军  李利民  闫文盛  徐彭寿  韦世强 《物理学报》2012,61(3):37302-037302
在分子束外延(MBE)设备中,利用直接沉积C原子的方法在覆盖有SiO2的Si衬底(SiO2/Si)上生长石墨烯,并通过Raman光谱和近边X射线吸收精细结构谱等实验技术对不同衬底温度(500℃,600℃,700℃,900℃,1100℃,1200℃)生长的薄膜进行结构表征.实验结果表明,在衬底温度较低时生长的薄膜是无定形碳,在衬底温度高于700℃时薄膜具有石墨烯的特征,而且石墨烯的结晶质量随着衬底温度的升高而改善,但过高的衬底温度会使石墨烯质量降低.衬底温度为1100℃时结晶质量最好.衬底温度较低时C原子活性较低,难以形成有序的C-sp2六方环.而衬底温度过高时(1200℃),衬底表面部分SiO2分解,C原子与表面的Si原子或者O原子结合而阻止石墨烯的形成,并产生表面缺陷导致石墨烯结晶变差.  相似文献   

2.
Microstructural properties of liquid and amorphous SiO2 nanoparticles have been investigated via molecular dynamics (MD) simulations with the interatomic potentials that have weak Coulomb interaction and Morse-type short-range interaction under non-periodic boundary conditions. Structural properties of spherical nanoparticles with different sizes of 2, 4 and 6 nm obtained at 3500 K have been studied through partial radial distribution functions (PRDFs), coordination number and bond-angle distributions, and compared with those observed in the bulk. The core and surface structures of liquid SiO2 nanoparticles have been studied in detail. We found significant size effects on structure of nanoparticles. Calculations also show that if the size is larger than 4 nm, liquid SiO2 nanoparticles at the temperature of 3500 K have a lightly distorted tetrahedral network structure with the mean coordination number ZSi-O≈4.0 and ZO-Si≈2.0 like those observed in the bulk. Moreover, temperature dependence of structural defects and SiOx stoichiometry in nanoparticles on cooling from the melt has been found and presented.  相似文献   

3.
Y.J. Guo  X.T. Zu  B.Y. Wang  X.D. Jiang  X.D. Yuan  H.B. Lv  S.Z. Xu 《Optik》2009,120(18):1012-1015
Two-layer ZrO2/SiO2 and SiO2/ZrO2 films were deposited on K9 glass substrates by sol–gel dip coating method. X-ray photoelectron spectroscopy (XPS) technique was used to investigate the diffusion of ZrO2/SiO2 and SiO2/ZrO2 films. To explain the difference of diffusion between ZrO2/SiO2 and SiO2/ZrO2 films, porous ratio and surface morphology of monolayer SiO2 and ZrO2 films were analyzed by using ellipsometry and atomic force microscopy (AFM). We found that for the ZrO2/SiO2 films there was a diffusion layer with a certain thickness and the atomic concentrations of Si and Zr changed rapidly; for the SiO2/ZrO2 films, the atomic concentrations of Si and Zr changed relatively slowly, and the ZrO2 layer had diffused through the entire SiO2 layer. The difference of diffusion between ZrO2/SiO2 and SiO2/ZrO2 films was influenced by the microstructure of SiO2 and ZrO2.  相似文献   

4.
Sm2S3 thin films were prepared on Si (1 0 0) substrates using SmCl3 and Na2S2O3 as precursors by liquid phase deposition method on self-assembled monolayers. The influence of the molar concentration ratio of [S2O32−]/[Sm3+] on the phase compositions, surface morphologies and optical properties of the as-deposited films were investigated. The as-deposited Sm2S3 thin films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), ultraviolet-visible (UV-vis) and photoluminescence spectrum (PL). Results show that it is important to control the [S2O32−]/[Sm3+] during the deposition process and monophase Sm2S3 thin films with orientation growth along (0 1 1) direction can be achieved when [S2O32−]/[Sm3+] = 2.0, pH 3.0, with citric acid as a template agent. The as-deposited thin films exhibit a dense and crystalline surface morphology. Good transmittance in the visible spectrum and excellent absorbency of ultraviolet light of the thin films are observed, and the band gap of the thin films first decrease and then increase with the increase of the [S2O32−]/[Sm3+]. The as-deposited thin films also exhibit red photoluminescence properties under visible light excitation. With the increase of the [S2O32−]/[Sm3+] in the deposition solution, the PL properties of Sm2S3 thin films are obviously improved.  相似文献   

5.
A combination of in situ X-ray photoelectron spectroscopy analysis and ex situ scanning electron- and atomic force microscopy has been used to study the formation of copper islands upon Cu deposition at elevated temperatures as a basis for the guided growth of copper islands. Two different temperature regions have been found: (I) up to 250 °C only close packed islands are formed due to low diffusion length of copper atoms on the surface. The SiO2 film acts as a barrier protecting the silicon substrate from diffusion of Cu atoms from oxide surface. (II) The deposition at temperatures above 300 °C leads to the formation of separate islands which are (primarily at higher temperatures) crystalline. At these temperatures, copper atoms diffuse through the SiO2 layer. However, they are not entirely dissolved in the bulk but a fraction of them forms a Cu rich layer in the vicinity of SiO2/Si interface. The high copper concentration in this layer lowers the concentration gradient between the surface and the substrate and, consequently, inhibits the diffusion of Cu atoms into the substrate. Hence, the Cu islands remain on the surface even at temperatures as high as 450 °C.  相似文献   

6.
We produced dielectric stacks composed of ALD SiO2 and ALD Al2O3, such as SiO2/Al2O3, Al2O3/SiO2, and SiO2/Al2O3/SiO2, and measured the leakage currents through the stacks in comparison with those of the single oxide layers. SiO2/Al2O3 shows lowest leakage current for negative bias region below 6.4 V, and Al2O3/SiO2 showed highest current under negative biases below 4.5 V. Two distinct electron conduction regimes are observed for Al2O3 and SiO2/Al2O3. Poole-Frenkel emission is dominant at the high-voltage regime for both dielectrics, whereas the direct tunneling through the dielectric is dominant at the low-voltage regime. The calculated transition voltage between two regimes for SiO2 (6.5 nm)/Al2O3 (12.6 nm) is −6.4 V, which agrees well with the experimental observation (−6.1 V). For the same EOT of entire dielectric stack, the transition voltage between two regimes decreases with thinner SiO2 layer.  相似文献   

7.
This paper investigated the gaseous formaldehyde degradation by the amine-functionalized SiO2/TiO2 photocatalytic films for improving indoor air quality. The films were synthesized via the co-condensation reaction of methyltrimethoxysilane (MTMOS) and 3-aminopropyltrimethoxysilane (APTMS). The physicochemical properties of prepared photocatalysts were characterized with N2 adsorption/desorption isotherms measurement, X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FT/IR). The effect of amine-functional groups and the ratio of MTMOS/APTMS precursors on the formaldehyde adsorption and photocatalytic degradation were investigated. The results showed that the formaldehyde adsorption and photocatalytic degradation of the APTMS-functionalized SiO2/TiO2 film was higher than that of SiO2/TiO2 film due to the surface adsorption on amine sites and the relatively high of the specific surface area of the APTMS-functionalized SiO2/TiO2 film (15 times higher than SiO2/TiO2). The enhancement of the formaldehyde degradation of the film can be attributed to the synergetic effect of adsorption and subsequent photocatalytic decomposition. The repeatability of photocatalytic film was also tested and the degradation efficiency was 91.0% of initial efficiency after seven cycles.  相似文献   

8.
In this letter, atomically resolved scanning tunneling microscopic (STM) images obtained from monolayer SiO2/Mo(1 1 2) are presented. The results are consistent with a previously proposed structural model of isolated [SiO4] units based on vibrational features observed by high-resolution electron energy loss spectroscopy (HREELS) and infrared reflection-absorption spectroscopy (IRAS), and oxygen species identified by ultra-violet photoemission spectroscopy (UPS). These results are inconsistent with a structural model that assumes a two-dimensional (2-D) [Si-O-Si] network. These data illustrate that a metal substrate, although coated with an oxide thin layer, can be directly imaged at the atomic-scale with STM.  相似文献   

9.
Interactions of Indium (In) and silicon (Si) atoms are known to catalyze certain organic chemical reactions with high efficiency. In an attempt of creating a material that manifests the interactions, In implanted SiO2 thin films were prepared by ion beam injection and their catalytic abilities for organic chemical reactions were examined. It has been found that, with an injection energy of approximately 0.5 keV, a thin In film is formed on a SiO2 substrate surface and the In implanted SiO2 thin film can catalyze an organic chemical reaction. It has been also shown that there is an optimal ion dose for the highest catalytic ability in the film preparation process. Thin-film-type catalyzing materials such as the one proposed here may open a new way to enhance surface chemical reaction rates.  相似文献   

10.
The low-temperature synthesis of anatase TiO2 films was an imperative requirement for their application to corrosion prevention of metals. In this paper, a liquid phase deposition (LPD) technique was developed to prepare TiO2 films on SUS304 stainless steel (304SS) at a relatively low temperature (80 °C). The as-prepared films were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy and X-ray photon spectroscopy (XPS). It was observed that a dense and crack-free anatase TiO2 film with a thickness about 300 nm was obtained. The film contained some fluorine and nitrogen elements, and the amounts of these impurities were greatly decreased upon calcination. Under the white light illumination, the electrode potential of TiO2 coated 304SS rapidly shifted to a more negative direction. Moreover, the photopotential of TiO2/304SS electrode showed more negative values with increased film thickness. In conclusion, the photogenerated cathodic protection of 304SS was achieved by the low-temperature LPD-derived TiO2 film.  相似文献   

11.
The influence of SiO2 on the dielectric properties of barium titanate ceramics was investigated. SiO2 had been doped solely and together with BaO into barium titanate before calcination. X-ray diffraction showed that all the ceramics were of a pure perovskite phase after sintering at 1275 °C for 2 h. For SiO2-doping, there was about 2.5 °C increase in Curie temperature per molar percentage of doping and the leakage current was obviously increased, especially at low voltages for relatively high doping levels. While for the co-doping of SiO2 and BaO, there was little change in Curie temperature. The point defects formed through the dopings were proposed responsible for the effects. It was suggested that SiO2 is important to barium titanate ceramics not only for sintering but also for modifying their properties.  相似文献   

12.
Silicon dioxide (SiO2) thin films were deposited on BK7 substrates by pulsed laser deposition (PLD) method using ceramic SiO2 targets (C-SiO2-Ts), which was sintered by solid state sintering. The reason for using C-SiO2-T instead of the silicon target is to reduce the oxygen-deficiency phenomenon in deposited SiO2 thin films. The influence of substrate-temperatures, oxygen-pressures and oxygen-plasma-assistance on the properties of synthesized films was studied. X-ray diffraction, atomic force microscopy, ultraviolet–visible–near-infrared scanning spectrophotometry were used to characterize the crystallinity, morphology and optical properties of deposited films. Results show that the root-mean-square roughness of films increased with the increase of oxygen-pressure, substrate-temperature and with the employment of oxygen-plasma. The transmittance of films increased with the increase of oxygen-pressure and decreased with the increase of substrate-temperature and with the employment of oxygen-plasma. Stoichiometric SiO2 thin film with high optical quality was synthesized at room-temperature and 20 Pa oxygen-pressure using C-SiO2-T.  相似文献   

13.
Novel egg-shell structured monometallic Pd/SiO2 and bimetallic Ca-Pd/SiO2 catalysts were prepared by an impregnation method using porous hollow silica (PHS) as the support and PdCl2 and Ca(NO3)2·4H2O as the precursors. It was found from transmission electron microscope (TEM), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) that Pd was loaded on PHS with a particle size of 5-12 nm in Pd/SiO2 samples and the Pd particle size in Ca-Pd/SiO2 was smaller than that in Pd/SiO2 since Ca could prevent Pd particles from aggregating. X-ray photoelectron spectroscopy (XPS) analyses exhibited that Pd 3d5/2 binding energies of Pd/SiO2 and Ca-Pd/SiO2 were 0.2 and 0.9 eV lower than that of bulk Pd, respectively, as a result of the shift of the electron cloud from Pd to oxygen in Pd/SiO2 and to both oxygen and Ca in Ca-Pd/SiO2. The activity of Ca-Pd/SiO2 egg-shell catalyst for CO hydrogenation and the selectivity to methanol, with a value of 36.50 mmolCO mol−1Pd s−1 and 100%, respectively, were much higher than those of the catalysts prepared with traditional silica gel as the support, owing to the porous core-shell structure of the PHS support.  相似文献   

14.
TiO2 single layers and TiO2/SiO2 high reflectors (HR) are prepared by electron beam evaporation at different TiO2 deposition rates. It is found that the changes of properties of TiO2 films with the increase of rate, such as the increase of refractive index and extinction coefficient and the decrease of physical thickness, lead to the spectrum shift and reflectivity bandwidth broadening of HR together with the increase of absorption and decrease of laser-induced damage threshold. The damages are found of different morphologies: a shallow pit to a seriously delaminated and deep crater, and the different amorphous-to-anatase-to-rutile phase transition processes detected by Raman study. The frequency shift of Raman vibration mode correlates with the strain in film. Energy dispersive X-ray analysis reveals that impurities and non-stoichiometric defects are two absorption initiations resulting to the laser-induced transformation.  相似文献   

15.
Aminated-CoFe2O4/SiO2 magnetic nanoparticles (NPs) were prepared from primary silica particles using modified StÖber method. By optimizing the preparation conditions, monodisperse CoFe2O4/SiO2 NPs with high amino groups’ density were obtained, which is necessary for enzyme immobilization. TEM confirm that the sample is a core/shell structure. These aminated-CoFe2O4/SiO2 NPs have narrow size distributions with a mean size of about 60 nm. Moreover, the aminated-CoFe2O4/SiO2 NPs can be easily dispersed in aqueous medium. The experimental results also show that the NPs have superparamagnetism, indicating that the aminated-CoFe2O4/SiO2 NPs can be used as an effective carrier for the enzyme immobilization.  相似文献   

16.
Structural and optical properties of Si/SiO2 multi-quantum wells (MQW) were investigated by means of Raman scattering and photoluminescence (PL) spectroscopy. The MQW structures were fabricated on a quartz substrate by remote plasma enhanced chemical vapour deposition (RPECVD) of alternating amorphous Si and SiO2 layers. After layer deposition the samples were subjected to heat treatments, i.e. rapid thermal annealing (RTA) and furnace annealing. Distinct PL signatures of confined carriers evidenced formation of Si-nanocrystals (nc-Si) in annealed samples. Analyses of Raman spectra also show presence of nc-Si phase along with amorphous-Si (a-Si) phase in the samples. The strong influence of the annealing parameters on the formation of nc-Si phase suggests broad possibilities in engineering MQW with various optical properties. Interestingly, conversion of the a-Si phase to the nc-Si phase saturates after certain time of furnace annealing. On the other hand, thinner Si layers showed a disproportionately lower crystalline volume fraction. From the obtained results we could assume that an interface strain prevents full crystallization of the Si layers and that the strain is larger for thinner Si layers. The anomalous dependence of nc-Si Raman scattering peak position on deposited layer thickness observed in our experiments also supports the above assumption.  相似文献   

17.
SiO2的赝晶化及AlN/SiO2纳米多层膜的超硬效应   总被引:1,自引:0,他引:1       下载免费PDF全文
赵文济  孔明  黄碧龙  李戈扬 《物理学报》2007,56(3):1574-1580
采用反应磁控溅射法制备了一系列不同SiO2层厚度的AlN/SiO2纳米多层膜,利用X射线衍射仪、高分辨透射电子显微镜和微力学探针表征了多层膜的微结构和力学性能,研究了SiO2层在多层膜中的晶化现象及其对多层膜生长方式及力学性能的影响. 结果表明,由于受AlN六方晶体结构的模板作用,溅射条件下以非晶态存在的SiO2层在其厚度小于0.6 nm时被强制晶化为与AlN相同的六方结构赝晶体并与AlN形成共格外延生长. 由于不同模量的两调制层存在晶格错配度,多层膜中产生了拉、压交变的应力场,使得多层膜产生硬度升高的超硬效应. SiO2随层厚的进一步增加又转变为以非晶态生长,多层膜的外延生长结构受到破坏,其硬度也随之降低. 关键词: 2纳米多层膜')" href="#">AlN/SiO2纳米多层膜 赝晶化 应力场 超硬效应  相似文献   

18.
The initial nucleation stages during deposition of SiO2 by remote plasma enhanced chemical vapour deposition (PECVD) have been monitored by XPS inelastic peak shape analysis. Experiments have been carried out on two substrates, a flat ZrO2 thin film and a silicon wafer with a native silicon oxide layer on its surface. For the two substrates it is found that PECVD SiO2 grows in the form of islands. When the SiO2 particles reach heights close to 10 nm they coalesce and cover completely the substrate surface. The particle formation mechanism has been confirmed by TEM observation of the particles grown on silicon substrates. The kinetic Monte Carlo simulation of the nucleation and growth of the SiO2 particles has shown that formation of islands is favoured under PECVD conditions because the plasma species may reach the substrate surface according to off-perpendicular directions. The average energy of these species is the main parameter used to describe their angular distribution function, while the reactivity of the surface is another key parameter used in the simulations.  相似文献   

19.
A new type of multicoated silica/zirconia/silver (SiO2/ZrO2/Ag) core-shell composite microspheres is synthesized in this paper. In the process, ZrO2-decorated silica (SiO2/ZrO2) core-shell composites were firstly fabricated by the modification of zirconia on silica microspheres through the hydrolysis of zirconium precursor. Subsequently, on SiO2/ZrO2 composite cores, silver nanoparticles were introduced via ultrasonic irradiation and acted as “Ag seeds” for the formation of integrate silver shell by further reduction of silver ions using formaldehyde as reducer. The resulting samples were characterized by transmission electron microscopy, X-ray diffraction, Fourier-transform infrared, energy-dispersive X-ray, and UV-vis spectroscopy, indicating that zirconia and silver layers were successfully coated on the surfaces of silica microspheres.  相似文献   

20.
利用聚乙烯亚胺(PEI)修饰的碳酸钙仿生模板合成了具有3D花朵型形貌的SiO2微球.通过调整碳酸钙微粒表面不同浓度PEI的吸附量实现SiO2微球的形貌控制呈现花朵或刀锋的形状. 用XPS和SEM对制备的SiO2微粒进行表征. 结果表明,不用浓度的PEI修饰可以较好地控制3花朵型DSiO2微球的形貌.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号