首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Multipod ZnO whiskers were synthesized successfully by two steps: pulsed laser deposition (PLD) and thermal evaporation process. First, a thin layer of Zn films were deposited on Si(1 1 1) substrates by PLD. Then the whiskers grew on Zn-coated Si(1 1 1) substrate by the simple thermal evaporation oxidation of the metallic zinc powder at 900 °C in the air without any catalysts or additives. The pre-deposited Zn films by PLD on the substrate can promote the growth of ZnO multipod whiskers effectively. The as-synthesized ZnO whiskers were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). The results revealed that the whiskers are highly crystalline with the wurtzite hexagonal structure. Room temperature photoluminescence (PL) spectrum of the whiskers shows a UV emission peak at ∼393 nm and a broad green emission peak at ∼517 nm, which was assigned to the near band-edge emission and the deep-level emission, respectively.  相似文献   

2.
Novel W-shaped porous ZnO nanobelt with the periodical junction angles of about 118° and straight porous ZnO nanobelt have been successfully synthesized. The W-shaped structure growth changes from [0 0 0 1] to periodically. The straight nanobelt grows along [0 0 0 1] direction. Both of the structures have smooth surfaces with high porous density. Based on our X-ray diffraction (XRD), electron microscopy and photoluminescence (PL) spectrum study, the growth mechanism of the special ZnO nanostructures is discussed, emphasizing the effect of alteration of the reactant concentration for two different morphologies.  相似文献   

3.
J.P. Kar  W. Lee 《Applied Surface Science》2008,254(20):6677-6682
Vertical aligned ZnO nanowires were grown by MOCVD technique on silicon substrate using ZnO and AlN thin films as seed layers. The shape of nanostructures was greatly influenced by the under laying surface. Vertical nanopencils were observed on ZnO/Si, whereas the nanowires on both sapphire and AlN/Si substrate have the similar aspect ratio. XRD patterns suggest that the nanostructures have good crystallinity. High-resolution transmission electron microscopy (HRTEM) confirmed the single crystalline growth of the ZnO nanowires along [0 0 1] direction. Room-temperature photoluminescence (PL) spectra of ZnO nanowires on AlN/Si clearly show a band-edge luminescence accompanied with a visible emission. More interestingly, no visible emission for the nanopencils on ZnO/Si substrates, were observed.  相似文献   

4.
Novel flowerlike ZnO structures have been rapidly synthesized on (1 0 0)-Si substrates via thermolysis of zinc acetate in air ambient without any catalyst. The obtained ZnO products exhibit well-defined flowerlike morphologies consisting of multilayer petal crystals with tapering feature. High-resolution transmission electron microscope (HRTEM) and corresponding selected area electron diffraction pattern (SAED) reveal that these petal crystals are single crystal in nature and preferentially oriented in the c-axis direction. Room-temperature photoluminescence (PL) spectra show that all the samples exhibit prominent UV emissions around 376.8 nm and very weak visible emission peaks, which demonstrates that there are few deep-level defects in the single crystal petals of the flowerlike ZnO structures. The growth mechanism of the as-synthesized flowerlike ZnO structures was also discussed.  相似文献   

5.
Large scale flower-like ZnO nanosheets have been synthesized on Zinc foil by a simple hydrothermal method. Their morphology and microstructures were characterized and analyzed by X-ray spectroscopy (XRD), field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HRTEM). The as-synthesized flower-like nanosheets are hexagonal phase single crystal with 200-300 nm in width, 50 nm in thickness. The growth process follows the liquid phase epitaxial growth mechanism. In this approach, the ZnO buffer is used as substrate for the growth of flower-like ZnO nanosheets. The growth direction of the nanosheets is the preferential [0 0 0 1] growth direction of ZnO. The photoluminescence spectrum of the sample exhibits only a sharp and strong UV emission centered at 386 nm, which indicates that the flower-like ZnO nanosheets on Zn foil are of good optical property.  相似文献   

6.
The effects of various substrate conditions on the morphology, crystal structure and photoluminescence of ZnO nanostructures synthesized by nanoparticle-assisted pulsed-laser ablation deposition were investigated. It is concluded that the sapphire substrate with a 1 h anneal at 1000 °C is the most favorable to the vertical growth of ZnO nanostructures. SEM analysis indicates that the well-aligned diameter-modulated ZnO nanonails with unique shape were successfully synthesized on the annealed sapphire substrate. The as-synthesized ZnO nanostructures exhibit an ultraviolet emission at around 390 nm and the absent green emission under room temperature, indicating that there is a very low concentration of deep-level defects inside ZnO lattices. The novel ZnO nanostructures could offer novel opportunities for both fundamental research and technological applications.  相似文献   

7.
Gold colloid:ZnO nanostructures were prepared from Zn powder by using thermal oxidation technique on alumina substrates, then it was impregnated by gold colloid for comparative study. The gold colloid is the solution prepared by chemical reduction technique; it appeared red color for gold nanoparticle solution and yellow color for gold solution. The heating temperature and sintering time of thermal oxidation were 700 °C and 24 h, respectively under oxygen atmosphere. The structural characteristics of gold colloid:ZnO nanostructures and pure ZnO nanostructures were studied using filed emission scanning electron microscope (FE-SEM). From FE-SEM images, the diameter and length of gold colloid:ZnO nanostructures and ZnO nanostructures were in the ranges of 100-500 nm and 2.0-7.0 μm, respectively. The ethanol sensing characteristics of gold colloid:ZnO nanostructures and ZnO nanostructures were observed from the resistance alteration under ethanol vapor atmosphere at concentrations of 50, 100, 200, 500, and 1000 ppm with the operating temperature of 260-360 °C. It was found that the sensitivity of sensor depends on the operating temperature and ethanol vapor concentrations. The sensitivity of gold colloid:ZnO nanostructures were improved with comparative pure ZnO nanostructures, while the optimum operating temperature was 300 °C. The mechanism analysis of sensor revealed that the oxygen species on the surface was O2−.  相似文献   

8.
β-Ga2O3 nanostructures including nanowires, nanoribbons and nanosheets were synthesized via thermal annealing of gold coated GaAs substrates in N2 ambient. GaAs substrates with different dopants were taken as the starting material to study the effect of doping on the growth and photoluminescence properties of β-Ga2O3 nanostructures. The nanostructures were investigated by Grazing Incident X-ray Diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy, Energy Dispersive X-ray Spectroscopy, room temperature photoluminescence and optical absorbance. The selected area electron diffraction and High resolution-TEM observations suggest that both nanowires and nanobelts are single crystalline. Different growth directions were observed for nanowires and nanoribbons, indicating the different growth patterns of these nanostructures. The PL spectra of β-Ga2O3 nanostructures exhibit a strong UV-blue emission band centered at 410 nm, 415 nm and 450 nm for differently doped GaAs substrates respectively. A weak red luminescence peak at 710 nm was also observed in all the samples. The optical absorbance spectrum showed intense absorption features in the UV spectral region. The growth and luminescence mechanism in β-Ga2O3 nanostructures are also discussed.  相似文献   

9.
The study is dedicated to some aspects of the controlled heteroepitaxial growth of nanoscaled ZnO structures and an investigation of their general and dimension mediated properties. ZnO nanostructures were synthesized by optimized MOCVD process via two growth approaches: (i) catalyst free self-organized growth of ZnO on Si substrates and (ii) ZnO heteroepitaxy on p-type hexagonal 4H-SiC substrates. The SiC substrate was prepared by sublimation epitaxy and served as a template for the ZnO epitaxial growth. The epitaxial growth of n-ZnO on p-SiC resulted in a regular matrix of well-faceted hexagonally shaped ZnO single crystals. The achievement of ZnO integration with Si encompasses controlled growth of vertically oriented nanosized ZnO pillars. The grown structures were characterized by transmission electron microscopy and microphotoluminescence. Low concentration of native defects due to a stoichiometry balance, advanced optical emission, (excitonic type near-band-edge emission and negligible defect related luminescence) and continuous interfaces (epitaxial relationship ZnO[0 0 0 1]/SiC[0 0 0 1]) are evidenced. The ZnO nanopillars were further probed as field emitters: the grown structures exhibits advanced field emission properties, which are explained in term of dimensionality and spatial uniformity of the nanopillars. The present results contribute to understanding and resolving growth and device related issues of ZnO as a functional nanostructured material.  相似文献   

10.
Bamboo-leaf-shaped ZnO nanostructures were synthesized by oxidation of metal Zn/SiO2 matrix composite thin films deposited on Si(1 1 1) substrates with radio frequency magnetron co-sputtering. The synthesized bamboo-leaf-shaped ZnO are single crystalline in nature with widths ranging from 30 to 60 nm and lengths of up to 5-10 μm, room temperature photoluminescence spectrum of the nanostructures shows a strong and sharp UV emission band at 372 nm and a weak and broad green emission band at about 520 nm which indicates relatively excellent crystallization and optical quality of the ZnO nanostructures synthesized by this novel method.  相似文献   

11.
ZnO nanostructures were grown on silicon, porous silicon, ZnO/Si and AlN/Si substrates by low-temperature aqueous synthesis method. The shape of nanostructures greatly depends on the underlying surface. Scattered ZnO nanorods were observed on silicon substrate, whereas aligned ZnO nanowires were obtained by introducing sputtered ZnO film as a seed layer. Furthermore, both the combination of nanorods and the bunch of nanowires were found on porous silicon substrates, whereas platelet-like morphology was observed on AlN/Si substrates. XRD patterns suggest the crystalline nature of aqueous-grown ZnO nanostructures and high-resolution transmission electron microscopy images confirm the single-crystalline growth of the ZnO nanorods along [0 0 1] direction. Room-temperature photoluminescence characterization clearly shows a band-edge luminescence along with a visible luminescence in the yellow spectral range.  相似文献   

12.
Single-crystal Eu3+-doped wurtzite ZnO micro- and nanowires were synthesized by chemical vapor deposition. The nanostructures grew via a self-catalytic mechanism on the walls of an alumina boat. The structure and properties of the doped ZnO were characterized using X-ray diffraction, energy-dispersive X-ray spectroscopy, scanning and transmission electron microscopy, and photoluminescence (PL) methods. A 10-min synthesis yielded vertically grown nanowires of 50–400 nm in diameter and several micrometers long. The nanowires grew along the ±[0001] direction. The Eu3+ concentration in the nanowires was 0.8 at.%. The crystal structure and microstructure of were compared for Eu3+-doped and undoped ZnO. PL spectra showed a red shift in emission for Eu3+-doped (2.02 eV) compared to undoped ZnO nanowires (2.37 eV) due to Eu3+ intraionic transitions. Diffuse reflectance spectra revealed widening of the optical bandgap by 0.12 eV for Eu3+-doped compared to undoped ZnO to yield a value of 3.31 eV. Fourier-transform infrared spectra confirmed the presence of europium in the ZnO nanowires.  相似文献   

13.
Zinc oxide (ZnO) and lead sulphide (PbS) nanoparticles separately synthesized by a precipitation method were combined by an ex situ route to prepare ZnO-PbS nanocomposites with different molar ratios of ZnO and PbS. The structure and morphology of the ZnO, PbS and ZnO-PbS samples were analyzed with X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). A UV-vis spectrophotometer was used to collect the absorption and 325 nm He-Cd and 488 nm Ar lasers were used to collect the photoluminescence data from the samples. ZnO nanoparticles showed a broad and stable emission peak at ∼570 nm, while a strongly quantum confined emission from PbS nanoparticles was detected at ∼1344-1486 nm. The ZnO-PbS nanocomposites exhibited dual emission in the visible and near-infrared (NIR) regions that is associated with defects and recombination of excitonic centres in the ZnO and PbS nanoparticles, respectively. The PL intensity of the visible emission from the ZnO-PbS nanocomposite was shown to increase when the ZnO to PbS molar ratio was 5:1 and the emission was almost quenched at molar ratios of 1:1 and 1:5. For different molar ratios of ZnO to PbS, the PL intensity of the NIR emission from the ZnO-PbS nanocomposites was more intense than that of PbS nanoparticles.  相似文献   

14.
Wurtzite zinc oxide (ZnO) nanochains have been synthesized through high-pressure pulsed laser deposition. The chain-like ZnO nanostructures were obtained from magnesium (Mg) doped ZnO targets, whereas vertically aligned nanorods were obtained from primitive ZnO targets. The Mg doping has influenced the morphological transition of ZnO nanostructures from nanorods to nanochains. The field emission scanning electron microscope images revealed the growth of beaded ZnO nanochains. The ZnO nanochains of different diameters 40 and 120 nm were obtained. The corresponding micro-Raman spectra showed strong E2H mode of ZnO, which confirmed the good crystallinity of the nanochains. In addition to near band edge emission at 3.28 eV, ZnO nanochains show broad deep level emission at 2.42 eV than that of ZnO nanorods.  相似文献   

15.
Single-crystalline, pyramidal zinc oxide nanorods have been synthesized in a large quantity on p-Si substrate via catalyst-free thermal chemical vapor deposition at low temperature. SEM investigations showed that the nanorods were vertically aligned on the substrate, with diameters ranging from 60 to 80 nm and lengths about 1.5 μm. A self-catalysis VLS growth mechanism was proposed for the formation of the ZnO nanorods. The field emission properties of the ZnO nanopyramid arrays were investigated. A turn-on field about 3.8 V/μm was obtained at a current density of 10 μA/cm2, and the field emission data was analyzed by applying the Fowler-Nordheim theory. The stability of emission current density under a high voltage was also tested, indicating that the ZnO nanostructures are promising for an application such as field emission sources.  相似文献   

16.
Novel porous ZnO nanobelts were successfully synthesized by heating layered basic zinc acetate (LBZA) nanobelts in the air. The precursor of LBZA nanobelts consisted of a lamellar structure with two interlayer distances of 1.325 and 0.99 nm were prepared using a low-temperature, solution-based method. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and infrared spectroscopy are used to characterize the as-products. PL measurements show that the porous ZnO nanobelts have strong ultraviolet emission properties at 380 nm, while no defect-related visible emission is detected. The good performance for photoluminescence emission makes the porous ZnO nanobelts promising candidates for photonic and electronic device applications.  相似文献   

17.
The ZnO nanowires have been synthesized using vapor-liquid-solid (VLS) process on Au catalyst thin film deposited on different substrates including Si(1 0 0), epi-Si(1 0 0), quartz and alumina. The influence of surface roughness of different substrates and two different environments (Ar + H2 and N2) on formation of ZnO nanostructures was investigated. According to AFM observations, the degree of surface roughness of the different substrates is an important factor to form Au islands for growing ZnO nanostructures (nanowires and nanobelts) with different diameters and lengths. Si substrate (without epi-taxy layer) was found that is the best substrate among Si (with epi-taxy layer), alumina and quartz, for the growth of ZnO nanowires with the uniformly small diameter. Scanning electron microscopy (SEM) reveals that different nanostructures including nanobelts, nanowires and microplates have been synthesized depending on types of substrates and gas flow. Observation by transmission electron microscopy (TEM) reveals that the nanostructures are grown by VLS mechanism. The field emission properties of ZnO nanowires grown on the Si(1 0 0) substrate, in various vacuum gaps, were characterized in a UHV chamber at room temperature. Field emission (FE) characterization shows that the turn-on field and the field enhancement factor (β) decrease and increases, respectively, when the vacuum gap (d) increase from 100 to 300 μm. The turn-on emission field and the enhancement factor of ZnO nanowires are found 10 V/μm and 1183 at the vacuum gap of 300 μm.  相似文献   

18.
ZnO nanostructures were obtained by directly irradiating a small volume of a solution of precursor on a fused-quartz substrate using an unfocused continuous wave CO2 laser for 2-30 s at laser powers ranging from 20 to 40 W. The laser-based thermochemistry approach allows rapid non-isothermal heating and convection enhanced mass transport which opens new growth mechanisms for the rapid deposition of nanomaterials at predetermined locations on a substrate. The deposits consist of a variety of ZnO nanostructure morphologies, including aggregated nanoparticles, nanorods, faceted nanocrystals and nanowires. The samples were characterized by scanning and transmission electron microscopy, X-ray diffraction and photoluminescence spectroscopy. They were found to exhibit an intense room-temperature photoluminescence, which is characterized by the presence of a strong UV peak around 390 nm and no visible emission. The relationship between the PL signal characteristics and specific ZnO nanostructures was investigated in order to point up optimal nanostructures for possible luminescent devices.  相似文献   

19.
Flower-like ZnO nanorods have been synthesized by heating a mixture of ZnO/graphite powders using the thermal evaporation and vapor transport on Si (1 0 0) substrates without any catalyst. The structures, morphologies and optical properties of the products were characterized in detail by using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) and Raman spectroscopy. The synthesized products consisted of large quantities of flower-like ZnO nanostructures in the form of uniform nanorods. The flower-like ZnO nanorods had high purity and well crystallized wurtzite structure, whose high crystalline quality was proved by Raman spectroscopy. The as-synthesized flower-like ZnO nanorods showed a strong ultraviolet emission at 386 nm and a weak and broad yellow-green emission in visible spectrum in its room temperature photoluminescence (PL) spectrum. In addition, the growth mechanism of the flower-like ZnO nanorods was discussed based on the reaction conditions.  相似文献   

20.
The epitaxial growth of doped ZnO films is of great technological importance. Present paper reports a detailed investigation of Sc-doped ZnO films grown on (1 0 0) silicon p-type substrates. The films were deposited by sol-gel technique using zinc acetate dihydrate as precursor, 2-methoxyethanol as solvent and monoethanolamine (MEA) as a stabilizer. Scandium was introduced as dopant in the solution by taking 0.5 wt%1 of scandium nitrate hexahydrate. The effect of annealing on structural and photoluminescence properties of nano-textured Sc-doped films was investigated in the temperature range of 300-550 °C. Structural investigations were carried out using X-ray diffraction, scanning electron microscopy and atomic force microscopy. X-ray diffraction study revealed that highly c-axis oriented films with full-width half maximum of 0.21° are obtained at an annealing temperature of 400 °C. The SEM images of ZnO:Sc films have revealed that coalescence of ZnO grains occurs due to annealing. Ostwald ripening was found to be the dominant mass transport mechanism in the coalescence process. A surface roughness of 4.7 nm and packing density of 0.93 were observed for the films annealed at 400 °C. Room temperature photoluminescence (PL) measurements of ZnO:Sc films annealed at 400 °C showed ultraviolet peak at about (382 nm) with FWHM of 141 meV, which are comparable to those found in high-quality ZnO films. The films annealed below or above 400 °C exhibited green emission as well. The presence of green emission has been correlated with the structural changes due to annealing. Reflection high energy electron diffraction pattern confirmed the nearly epitaxial growth of the films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号