首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Graft polymerization of acrylic acid (AA) onto porous polyethersulfone (PES) membrane surfaces was developed using corona discharge in atmospheric ambience as an activation process followed by polymerization of AA in aqueous solution. The effects of the corona parameters and graft polymerization conditions on grafting yield (GY) of AA were investigated. The grafting of AA on the PES membranes was confirmed by ATR-FTIR and X-ray photoelectron spectroscopy (XPS) analysis. Porosimetry measurements indicate the average pore diameters and porosities of the modified membranes decrease with the increase of the GY. The hydrophilicity and surface wetting properties of the original and modified membranes were evaluated by observing the dynamic changes of water contact angles. It is found that the grafting of AA occurs not only on the membrane surfaces, but also on the pore walls of the cells inside the membrane. The permeability experiments of protein solution reveal that the grafting of PAA endows the modified membranes with enhanced fluxes and anti-fouling properties. The optimized GY of AA is in the range of 150-200 μg/cm2. In addition, the tensile experiments show the corona discharge treatment with the power lower than 150 W yields little damage to the mechanical strength of the membranes.  相似文献   

2.
Surface properties of a Melinex 800 PET polymer material modified by an atmospheric-pressure air dielectric barrier discharge (DBD) have been studied using X-ray photoelectron microscopy (XPS) and contact angle measurement. The results show that the material surface treated by the DBD was modified significantly in chemical composition, with the highly oxidised carbon species increasing as the surface processing proceeds. The surface hydrophilicity was dramatically improved after the treatment, with the surface contact angle reduced from 81.8° for the as-supplied sample to lower than 50° after treatment. Post-treatment recovery effect is found after the treated samples were stored in air for a long period of time, with the ultimate contact angles, as measured, being stabilised in the range 58-69° after the storage, varying with the DBD-treatment power density. A great amount of the C-O type bonding formed during the DBD treatment was found to be converted into the CO type during post-treatment storage. A possible mechanism for this bond conversion has been suggested.  相似文献   

3.
An attempt was made to study the effect of plasma surface activation on the adhesion of UV-curable sol-gel coatings on polycarbonate (PC) and polymethylmethacrylate (PMMA) substrates. The sol was synthesized by the hydrolysis and condensation of a UV-curable silane in combination with Zr-n-propoxide. Coatings deposited by dip coating were cured using UV-radiation followed by thermal curing between 80 °C and 130 °C. The effect of plasma surface treatment on the wettability of the polymer surface prior to coating deposition was followed up by measuring the water contact angle. The water contact angle on the surface of as-cleaned substrates was 80° ± 2° and that after plasma treatment was 43° ± 1° and 50° ± 2° for PC and PMMA respectively. Adhesion as well as mechanical properties like scratch resistance and taber abrasion resistance were evaluated for coatings deposited over plasma treated and untreated surfaces.  相似文献   

4.
A superhydrophobic ZnO oriented nanorods coating on brocade substrate was prepared by a low-temperature wet chemical route, and the corresponding waterproof properties were evaluated. From wetting measurement, the modified brocades have a water contact angle of ∼152° and roll-off angle of 9° to a 10 μL water-droplet. A direct immersion of the modified brocades in water gives a strongly water-repellent behavior. The obtained waterproof brocades offer an opportunity for fabricating some special and protective drygoods.  相似文献   

5.
In this study, the effect of ultraviolet light (UV) irradiation and water spray on color, contact angle and surface chemistry of treated wood was studied. Southern pine sapwood (Pinus Elliottii.Engelm.) treated with copper ethanolamine (Cu-MEA) was subjected to artificially accelerated weathering with a QUV Weathering Tester. The compositional changes and the surface properties of the weathered samples were characterized by Fourier transform infrared (FTIR) spectroscopy, color and contact angle measurements. FTIR indicated that MEA treatment was not found to slow down wood weathering. FTIR spectrum of MEA-treated sample was similar to that of the untreated SP. However, the Cu-MEA treatment retarded the surface lignin degradation during weathering. The main changes in FTIR spectrum of Cu-MEA treatment took place at 915, 1510, and 1595 cm−1. The intensity of the bands at 1510 and 1595 cm−1 increased with the Cu-MEA treatment. Both untreated and MEA-treated exhibited higher ΔE than the Cu-MEA treated samples, indicating that MEA treatment did not retard color changes. However, ΔE decreased with increasing copper concentration, suggesting a positive contribution of Cu-EA to wood color stability. The contact angle of untreated and MEA-treated samples changed rapidly, and dropped from 75 ± 5° to 0° after artificial weathering up to 600 h. Treatment with Cu-MEA slowed down the decreasing in contact angle. As the copper concentration increases, the rate of change in contact angle decreases.  相似文献   

6.
Wetting characteristics of micro-nanorough substrates of aluminum and smooth silicon substrates have been studied and compared by depositing hydrocarbon and fluorinated-hydrocarbon coatings via plasma enhanced chemical vapor deposition (PECVD) technique using a mixture of Ar, CH4 and C2F6 gases. The water contact angles on the hydrocarbon and fluorinated-hydrocarbon coatings deposited on silicon substrates were found to be 72° and 105°, respectively. However, the micro-nanorough aluminum substrates demonstrated superhydrophobic properties upon coatings with fluorinated-hydrocarbon providing a water contact angle of ∼165° and contact angle hysteresis below 2° with water drops rolling off from those surfaces while the same substrates showed contact angle of 135° with water drops sticking on those surfaces. The superhydrophobic properties is due to the high fluorine content in the fluorinated-hydrocarbon coatings of ∼36 at.%, as investigated by X-ray photoelectron spectroscopy (XPS), by lowering the surface energy of the micro-nanorough aluminum substrates.  相似文献   

7.
The present paper describes the room temperature synthesis of dip coated water repellent silica coatings onto stainless steel substrates using 1,1,1,3,3,3-hexamethyldisilazane as a surface modifying agent. The hydrophobic property of the silica coating was enhanced by increasing its surface roughness, which was achieved by a proper control over the MeOH/TMOS molar ratio (S) during the synthesis. The contact angle of a water droplet (10 μl) increased from 72° to 145° with an increase in the S value from 9.1 to 36.4. The silica coating showed a minimum sliding angle of 15° for a water droplet of 10 μl. The water repellent silica coatings are thermally stable up to a temperature of 340 °C. The results have been discussed by taking into consideration the contact angle measurements, surface morphology and sol-gel parameters.  相似文献   

8.
Superhydrophobic polytetrafluoroethylene (PTFE) thin films were obtained by pulsed laser deposition (PLD) technique carried out with KrF excimer laser (λ = 248 nm) of about 1 J/cm2 at a pressure of 1.33 Pa. The samples exhibit high water contact angle of about 170° and the sliding angle smaller than 2°. From studying the surface morphology of the prepared films, it is believed that the nano-scale surface roughness has enhanced the hydrophobic property of the PTFE. The increase of trapping air and reducing liquid-solid contact area due to the rough surface, as suggested by the Cassie-Baxter's model, should be responsible for superhydrophobicity of the PLD prepared films. This study thus provides a convenient one-step method without using wet-process to produce a superhydrophobic surface with good self-cleaning properties.  相似文献   

9.
The graft polymerization of acrylic acid (AAc) was carried out onto poly(tetrafluoroethylene) (PTFE) films that had been pretreated with remote argon plasma and subsequently exposed to oxygen to create peroxides. Peroxides are known to be the species responsible for initiating the graft polymerization when PTFE reacts with AAc. We chose different parameters of remote plasma treatment to get the optimum condition for introducing maximum peroxides (2.87 × 10−11 mol/cm2) on the surface. The influence of grafted reaction conditions on the grafting degree was investigated. The maximum grafting degree was 25.2 μg/cm2. The surface microstructures and compositions of the AAc grafted PTFE film were characterized with the water contact angle meter, Fourier-transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). Contact angle measurements revealed that the water contact angle decreased from 108° to 41° and the surface free energy increased from 22.1 × 10−5 to 62.1 × 10−5 N cm−1 by the grafting of the AAc chains. The hydrophilicity of the PTFE film surface was greatly enhanced. The time-dependent activity of the grafted surface was better than that of the plasma treated film.  相似文献   

10.
The structural properties of fluorine containing polymer compounds make them highly attractive materials for hydro-oleophobic applications. However, most of these exhibit low surface energy and poor adhesion on the substrates. In the present investigation, crack free, smooth and uniform thin films of poly[4,5-difluoro-2,2-bis(trifluoromethyl)-1,3-dioxole]-co-tetrafluoroethylene (TFD-co-TFE) with good adhesion have been deposited by wet chemical spin-coating technique on polished AISI 440C steel substrates. The as-deposited films (xerogel films) have been subjected to annealing for 1 h at different temperatures ranging from 100 to 500 °C in an argon atmosphere. The size growth of the nano-hemispheres increased from 8 nm for xerogel film to 28 nm for film annealed at 400 °C. It was found that as the annealing temperature increased from 100 to 400 °C, nano-hemisphere-like structures were formed, which in turn have shown increase in the water contact angle from 122° to 147° and oil (peanut) contact angle from 85° to 96°. No change in the water contact angle (122°) has been observed when the films deposited at room temperature were heated in air from 30 to 80 °C as well as exposed to steam for 8 days for 8 h/day indicating thermal stability of the film.  相似文献   

11.
Control on the wettability of solid state materials is a classical and key issue in surface engineering. Optically transparent methyltriethoxysilane (MTES)-based silica films with water sliding angle as low as 9° were successfully prepared by two-step sol-gel co-precursor method. The emphasis is given to the effect of trimethylethoxysilane (TMES) as a co-precursor on water sliding behavior of silica films. The coating sol was prepared with molar ratio of methyltriethoxysilane (MTES), methanol (MeOH), acidic water (0.01 M, oxalic acid) and basic water (12 M, NH4OH) kept constant at 1:12.73:3.58:3.58 respectively, and the molar ratio of TMES/MTES (M) was varied from 0 to 0.22. The static water contact angle as high as 120° and the water sliding angle as low as 9° was obtained by keeping the molar ratio (M) of TMES/MTES at 0.22. When the modified films were cured at temperature higher than 280 °C, the films became superhydrophilic. Further, the humidity study was carried out at a relative humidity of 90% at 30 °C over 60 days. We characterized the water repellent silica films by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), % of optical transmission, humidity tests and static and dynamic water contact angle (CA) measurements.  相似文献   

12.
Hierarchical micrometer-nanometer-scale binary rough structures were fabricated on copper substrates by electrochemical machining in a neutral NaCl electrolyte. The rough structures are composed of the micrometer scale potato-like structures and the nanometer scale cube-like structures. After modified by the fluoroalkylsilane, the copper surfaces reached superhydrophobicity with a water contact angle of 164.3° and a water tilting angle less than 9°. This method has a high processing efficiency which can take just 3 s to fabricate the roughness required by the superhydrophobic surface. The effect of the processing time on wettability of the copper surfaces was investigated in this paper. The possible mechanism of the formation of the hierarchical roughness was also proposed, and the wettability of the copper surfaces was discussed on the basis of the Cassie-Baxter theory.  相似文献   

13.
Hydrophobic properties are of interest in fabric and textile manufacture. We have used radio-frequency inductively coupled SF6plasma to modify the surface of Thai silk fabrics for the enhancement of the hydrophobic property. The water contact angle of fabrics increased from 0°up to 145°after SF6 plasma treatment. The measured water absorption time was found to depend upon the treatment time and RF power, for SF6 pressures lower than 0.05 Torr. At higher SF6 pressures, all samples achieved absorption times in excess of 200 min, regardless of the treatment time and RF power. The morphology changes of fabrics after plasma treatment were characterized by scanning electron microscopy and atomic force microscopy. After plasma treatment, the RMS surface roughness of the fibres increased from about 10 to 30 nm. From X-ray photoelectron microscopy analysis, we found that the hydrophobicity of the fabrics is the highest when the fluorine/carbon ratio at the surface increases. A small decrease of the oxygen/carbon ratio was also observed on the fabrics that showed the longest absorption times.  相似文献   

14.
Owing to excellent electric properties, silicone rubber (SIR) has been widely employed in outdoor insulator. For further improving its hydrophobicity and service life, the SIR samples are treated by CF4 radio frequency (RF) capacitively coupled plasma. The hydrophobic and oleophobic properties are characterized by static contact angle method. The surface morphology of modified SIR is observed by atom force microscope (AFM). X-ray photoelectron spectroscopy (XPS) is used to test the variation of the functional groups on the SIR surface due to the treatment by CF4 plasma. The results indicate that the static contact angle of SIR surface is improved from 100.7° to 150.2° via the CF4 plasma modification, and the super-hydrophobic surface of modified SIR, which the corresponding static contact angle is 150.2°, appears at RF power of 200 W for a 5 min treatment time. It is found that the super-hydrophobic surface ascribes to the coaction of the increase of roughness created by the ablation action and the formation of [-SiFx(CH3)2−x-O-]n (x = 1, 2) structure produced by F atoms replacement methyl groups reaction, more importantly, the formation of [-SiF2-O-]n structure is the major factor for super-hydrophobic surface, and it is different from the previous studies, which proposed the fluorocarbon species such as C-F, C-F2, C-F3, CF-CFn, and C-CFn, were largely introduced to the polymer surface and responsible for the formation of low surface energy.  相似文献   

15.
Water is one of the most affecting chemicals that can cause damage to the solid surface. To protect the surface due to the action of water, the surface should be made hydrophobic. In the present study, the improvement in hydrophobicity of silica films using metal acetylacetonate (M-acac) by employing heat treatment to methyltrimethoxy silane (MTMS) based silica coatings is reported as a novel attempt. Instead of following the established trends of the surface derivatization or co-precursor method, iron acetylacetonate Fe(acac)3, copper acetylacetonate Cu(acac)2 and heat treatment were used to incorporate hydrophobicity with silica coatings. As M-acac is readily soluble in organic solvents, Fe(acac)3 and Cu(acac)2 were dissolved in methanol (MeOH) and their concentration was varied from 0 to 0.025 M. The coating solution was prepared by optimizing molar ratio of MTMS:MeOH:basic H2O to 1:7.15:6.34, respectively. Gelation time (tg) for Cu(acac)2 containing silica sol and that containing Fe(acac)3 were noted to be 30 and 55 min, respectively. The substrates were taken out after gelation and heat treated at 150 °C for 2 h. The heat treated films showed a dramatic increase in the static water contact angle from 82° to as high as 142°.  相似文献   

16.
A simple new approach was developed to obtain a super-hydrophobic PVC film from a natural lotus leaf using the nanocasting method. SEM shows that compared with a common smooth PVC film, a lotus-leaf-like surface structure was clearly observed on the super-hydrophobic PVC film. The water contact angle and rolling-off angle on the as-prepared lotus-leaf-like PVC film were 157 ± 1.8° and 3 ± 0.6°, respectively. The samples were kept at temperatures between 5 and 40 °C in the ambient atmosphere for 2 months, and no decrease in water contact angle was observed, nor was contamination observed.  相似文献   

17.
Non-wettable surfaces with high contact angles and facile sliding angle of water droplets have received tremendous attention in recent years. The present paper describes the room temperature (∼27 °C) synthesis of dip coated water repellent silica coatings on glass substrates using iso-butyltrimethoxysilane (iso-BTMS) as a co-precursor. Emphasis is given to the influence of the hydrophobic reagent (iso-BTMS) on the water repellent properties of the silica films. Silica sol was prepared by keeping the molar ratio of tetraethoxysilane (TEOS) precursor, methanol (MeOH) solvent, water (H2O) constant at 1:16.53:8.26 respectively, with 0.01 M NH4F throughout the experiment and the molar ratio of iso-BTMS/TEOS (M) was varied from 0 to 0.965. The effect of M on the surface structure and hydrophobicity has been researched. The static water contact angle values of the silica films increased from 65° to 140° and water sliding angle values decreased from 42° to 16° with an increase in the M value from 0 to 0.965. The water repellent silica films are thermally stable up to a temperature of 280 °C and above this temperature the film shows hydrophilic behavior. The water repellent silica films were characterized by the Fourier Transform Infrared (FT-IR) Spectroscopy, Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), % of optical transmission, thermal and chemical aging tests, humidity tests, static and dynamic water contact angle measurements.  相似文献   

18.
Stainless steel wafers were treated with the glow discharge plasma of mixed N2O and O2 at different molar ratios at a certain discharge condition to create desirable biological characteristics to the surfaces. It was found that the molar ratio of N2O to O2 in the mixture at 1:1 used for plasma surface modification caused high apoptotic percentage. Contact angle measurement showed that the surface of stainless steel samples became very hydrophilic after the plasma modification with a value of 15°-30°. The control stainless steel chips without plasma treatment had a contact angle of 40 ± 2°. The data of Electron Spectroscopy for Chemical Analysis (ESCA) indicated that there was a certain amount of oxynitrites formed on the plasma treated surfaces, which was considered to play an important role to cell apoptosis and anti-clot formation in cell culture tests. The ESCA depth profile of up to 250 Å from the top surface showed the change of elemental compositions within 40-50 Å of the surface by the plasma treatment. The decreased platelet attachment, combined with increased apoptosis in fibroblasts is a distinct combination of biological responses arising from the mixed gas plasma treatment. These initial results suggest it may be of particular use relative to stainless steel stents where decreased platelet attachments are advantageous and induction of apoptosis could limit in-stent restenosis.  相似文献   

19.
Cobalt-manganese oxide materials (CMOs) were prepared by chemical method and heat treated at 150, 400, 600, 800 and 1000 °C, respectively. The physical and electrochemical properties of the materials were characterized. The heat treatment process leads to the removal of water molecules adsorbed on the surface of CMO particles (below 400 °C) and the progressive reduction of Mn and Co ions from Mn4+ and Co3+ to Mn3+/Mn2+ and Co2+, respectively (440-1000 °C). CMOs obtained by treatment below 800 °C have poor crystallinity and a highly crystallized tetragonal phase by treatment at 1000 °C. The ratio of Mn and Co in CMOs is found by EDX analysis to be about 2:1. The electrochemical testing results indicate that the high crystallization of CMO is disadvantageous for the energy storage as electrode material of electrochemical capacitors. However, for CMOs with poor crystallinity, relatively high specific capacitances can be obtained. The incorporation of protons and ions into the CMO's lattice during electrochemical charge/discharge process leads to the distortion of crystal lattice and improvement of crystallinity of CMO. The XRD patterns show that negative electrode (NE) and positive electrode (PE) have tetragonal (Co, Mn)(Mn, Co)2O4 phase.  相似文献   

20.
The effectiveness of improving the wettability of HDPE powders within less than 0.1 s by plasma surface modification in a Plasma Downer Reactor is investigated. A correlation is revealed between the XPS results (O/C-ratio) and the wettability (contact angle, polar surface tension by capillary rise method). The O2-content in the plasma feed gas has been adjusted for best wettability properties. XPS results indicate the formation of CO and COOH functional groups on the powder surface. The O/C-ratio increased from 0.0 (no oxygen on the non-treated powder) up to 0.15 for the plasma treated HDPE powder surface. With pure O2-plasma treatment, a water contact angle reduction from >90° (no water penetration into the untreated PE powder) down to 65° was achieved. The total surface free energy increased from 31.2 to 45 mN/m. Ageing of treated powders occurs and proceeds mostly within the first 7 days of storage. Contact angle measurements and O1s/O2s intensity ratio data support that ageing is mainly a diffusion-controlled process. Nevertheless, XPS results show the presence of oxygen functional groups even after 40 days, which explains why the powder is still dispersible in water without any addition of surfactants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号