首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present the results of benzene adsorption at the acidic pH level determined on the series of chemically modified activated carbons and at three temperatures. The influence of carbon surface chemical composition on benzene adsorption is discussed. It is shown that the decrease in the pH level from 7 up to 1.5 increases benzene adsorption and the only exception is carbon modified with gaseous ammonia. Basing on the results of current work and those published previously (for phenol, paracetamol, acetanilide and aniline) and using the results of quantum chemistry calculations (DFT, Gaussian 98) we show, that the value of the energy of interaction with unit positive charge is crucial during the analysis of the influence of pH level on adsorption. Obtained results allow to predict the changes in adsorption of aromatics on carbons with the decrease in the pH level.  相似文献   

2.
The adsorption of three selected aromatic compounds (aniline, sulfanilic acid and benzenesulfonic acid) on activated carbons with different surface chemical properties was investigated at different solution pH. A fairly basic commercial activated carbon was modified by means of chemical treatment with HNO3, yielding an acid activated carbon. The textural properties of this sample were not significantly changed after the oxidation treatment. Equilibrium isotherms of the selected compounds on the mentioned samples were obtained and the results were discussed in relation to their surface chemistry. The influence of electrostatic and dispersive interactions involved in the uptake of the compounds studied was evaluated. The Freundlich model was used to fit the experimental data. Higher uptakes are attained when the compounds are present in their molecular form. In general, adsorption was disfavoured by the introduction of oxygen-containing groups on the surface of the activated carbon.  相似文献   

3.
Activated carbons were prepared from cattle manure compost (CMC) using zinc chloride activation. The structural and surface chemical characteristics of CMC-based activated carbons were determined by N2 adsorption-desorption and Boehm titration, respectively. The water vapor adsorption properties of the prepared activated carbons with various pore structure and surface nature were examined, and the mechanism of water adsorbed onto activated carbon was also discussed. The results show that the adsorption of water vapor on carbons begins at specific active sites at low relative humidity (RH), followed by micropore filling at medium RH through the formation of pentamer cluster of water molecules in the narrow micropores. The water vapor adsorption capacity of activated carbon is predominantly dependent on its pore volume and surface area. Although capillary condensation is not the mechanism for water adsorption onto activated carbon, water can adsorb on narrow mesopore to some extent.  相似文献   

4.
The heterogeneity of activated carbons (ACs) prepared from different precursors is investigated on the basis of adsorption isotherms of aniline from dilute aqueous solutions at various pH values. The APET carbon prepared from polyethyleneterephthalate (PET), as well as, commercial ACP carbon prepared from peat were used. Besides, to investigate the influence of carbon surface chemistry, the adsorption was studied on modified carbons based on ACP carbon. Its various oxygen surface groups were changed by both nitric acid and thermal treatments. The Dubinin-Astakhov (DA) equation and Langmuir-Freundlich (LF) one have been used to model the phenomenon of aniline adsorption from aqueous solutions on heterogeneous carbon surfaces. Adsorption-energy distribution (AED) functions have been calculated by using an algorithm based on a regularization method. Analysis of these functions for activated carbons studied provides important comparative information about their surface heterogeneity.  相似文献   

5.
Modification of bamboo-based activated carbon was carried out in a microwave oven under N2 atmosphere. The virgin and modified activated carbons were characterized by means of low temperature N2 adsorption, acid-base titration, point of zero charge (pHpzc) measurement, FTIR and XPS spectra. A gradual decrease in the surface acidic groups was observed during the modification, while the surface basicity was enhanced to some extent, which gave rise to an increase in the pHpzc value. The species of the functional groups and relative content of various elements and groups were given further analysis using FTIR and XPS spectra. An increase in the micropores was found at the start, and the micropores were then extended into larger ones, resulting in an increase in the pore volume and average pore size. Adsorption studies showed enhanced adsorption of methylene blue on the modified activated carbons, caused mainly by the enlargement of the micropores. Adsorption isotherm fittings revealed that Langmuir and Freundlich models were applicable for the virgin and modified activated carbons, respectively. Kinetic studies exhibited faster adsorption rate of methylene blue on the modified activated carbons, and the pseudo-second-order model fitted well for all of the activated carbons.  相似文献   

6.
The activated carbons (ACs) prepared from cattle manure compost (CMC) with various pore structure and surface chemistry were used to remove phenol and methylene blue (MB) from aqueous solutions. The adsorption equilibrium and kinetics of two organic contaminants onto the ACs were investigated and the schematic models for the adsorptive processes were proposed. The result shows that the removal of functional groups from ACs surface leads to decreasing both rate constants for phenol and MB adsorption. It also causes the decrement of MB adsorption capacity. However, the decrease of surface functional groups was found to result in the increase of phenol adsorption capacity. In our schematic model for adsorptive processes, the presence of acidic functional groups on the surface of carbon is assumed to act as channels for diffusion of adsorbate molecules onto small pores, therefore, promotes the adsorption rate of both phenol and MB. In phenol solution, water molecules firstly adsorb on surface oxygen groups by H-bonding and subsequently form water clusters, which cause partial blockage of the micropores, deduce electrons from the π-electron system of the carbon basal planes, hence, impede or prevent phenol adsorption. On the contrary, in MB solution, the oxygen groups prefer to combine with MB+ cations than water molecules, which lead to the increase of MB adsorption capacity.  相似文献   

7.
Adsorption of toxic heavy metal ions and aromatic compounds onto activated carbons of various amount of surface C-O complexes were examined to study the optimum surface conditions for adsorption in aqueous phase. Cadmium(II) and zinc(II) were used as heavy metal ions, and phenol and nitrobenzene as aromatic compounds, respectively. Activated carbon was de-ashed followed by oxidation with nitric acid, and then it was stepwise out-gassed in helium flow up to 1273 K to gradually remove C-O complexes introduced by the oxidation. The oxidized activated carbon exhibited superior adsorption for heavy metal ions but poor performance for aromatic compounds. Both heavy metal ions and aromatics can be removed to much extent by the out-gassed activated carbon at 1273 K. Removing C-O complexes, the adsorption mechanisms would be switched from ion exchange to Cπ-cation interaction for the heavy metals adsorption, and from some kind of oxygen-aromatics interaction to π-π dispersion for the aromatics.  相似文献   

8.
The goal of this study is to investigate the preparation of low-cost activated carbon from bean pods waste and to explore their potential application for the removal of heavy metals from aqueous solutions. Conventional physical (water vapor) activation was used for synthesizing the adsorbent. The obtained carbon was employed for the removal of As (III) and Mn (II) from aqueous solutions at different initial concentrations and pH values. Adsorption for both ions follows Langmuir-type isotherm, the maximum loading capacities for arsenic (III) and Mn (II) ions being 1.01 and 23.4 mg g−1, respectively. According to the experimental data, it can be inferred that the basic character of the surface, i.e. the high content of basic groups, favors adsorption of ions. Arsenic adsorption capacity on the carbon obtained from agricultural waste was found to be similar to this of more expensive commercial carbons showing high adsorption capability. Regarding manganese adsorption, herein obtained carbon presented higher uptake adsorption than that of activated carbons reported in the literature.  相似文献   

9.
A commercial granular activated carbon (GAC) was subjected to thermal treatment with ammonia for obtaining an efficient carbon dioxide (CO2) adsorbent. In general, CO2 adsorption capacity of activated carbon can be increased by introduction of basic nitrogen functionalities onto the carbon surface. In this work, the effect of oxygen surface groups before introduction of basic nitrogen functionalities to the carbon surface on CO2 adsorption capacity was investigated. For this purpose two different approaches of ammonia treatment without preliminary oxidation and amination of oxidized samples were studied. Modified carbons were characterized by elemental analysis and Fourier Transform Infrared spectroscopy (FT-IR) to study the impact of changes in surface chemistry and formation of specific surface groups on adsorption properties. The texture of the samples was characterized by conducting N2 adsorption/desorption at −196 °C. CO2 capture performance of the samples was investigated using a thermogravimetric analysis (TGA). It was found that in both modification techniques, the presence of nitrogen functionalities on carbon surface generally increased the CO2 adsorption capacity. The results indicated that oxidation followed by high temperature ammonia treatment (800 °C) considerably enhanced the CO2 uptake at higher temperatures.  相似文献   

10.
重金属污染是一个相当严重的环境问题。镉具有很强的生物毒性和不可降解性,对生态环境和人体健康有极大威胁,被列为优先控制污染物。环境中镉的主要污染源是电镀、采矿和化学工业等部门的废水,如何简单高效去除水中的镉,有重要的社会意义和经济意义。目前,水中重金属的去除方法有化学沉淀、膜分离、离子交换、吸附、电解等,其中吸附法因简单高效而广泛应用。活性炭纤维是一种新型活性炭,孔径小且均匀,表面官能团发达,吸附性能好,逐步应用于水处理领域。以电感耦合等离子体光谱为检测手段,佐以比表面积分析,X射线衍射,元素分析和傅里叶变换红外光谱,研究比较了三种活性炭纤维(纤维炭网、活性炭无纺布、活性炭纤维毡)的结构特点及其对水中镉的吸附性能。三种活性炭纤维结构基本类似,具有较发达的孔隙结构。活性炭无纺布极性较强,表面有丰富的羟基、羧基、醛基等含氧官能团,对水中镉的吸附作用最大。因此,选择活性炭无纺布为吸附剂进行后续实验。研究了活性炭无纺布吸附镉的影响因素,如溶液pH,吸附时间等。溶液pH影响吸附剂表面电荷及水中镉的存在状态。水中镉的去除效率随溶液初始pH的增大而增大,在较低pH时,吸附剂与Cd2+间存在静电斥力,同时H+和Cd2+存在竞争吸附,pH>9时,镉的去除是吸附与沉淀协同作用的结果,选择pH为6~7。在吸附的初始阶段,活性炭无纺布对Cd2+的吸附量迅速增加,10 min时,吸附率达到72%。随着吸附位点逐渐被Cd2+所填充,吸附速率逐渐变慢,300 min时,吸附容量基本无变化,吸附趋于平衡。优化了镉的吸附条件后,进行等温吸附实验和动力学实验。结果表明,25 ℃时,吸附时间为300 min,pH 6.0条件下,当镉的平衡浓度在20.00 mg·L-1时,活性炭无纺布对镉的单位质量吸附量和单位比表面积吸附量分别是3.04 mg·g-1和0.035 mg·m-2。用Langmuir方程(R2=0.997, KL =1.796 L·mg-1)和Freundich方程(R2=0.895, KF=0.918 L·mg-1, n=2.12)拟合活性炭无纺布对镉的等温吸附数据,Langmuir方程计算的理论吸附量为3.07 mg·g-1,与实验值相当,并且线性系数更高,说明该体系的吸附符合Langmuir方程,主要为单分子层吸附。Langmuir分离因子介于0和1之间,表明活性炭无纺布对镉的吸附容易进行。用准一级动力学方程、准二级动力学方程、颗粒内扩散方程和Elovich方程四种动力学模型拟合吸附过程。在吸附的前5 min,镉在活性炭无纺布上的吸附符合颗粒内扩散方程(R2=0.985),吸附主要受颗粒内扩散控制。在吸附的5~300 min,颗粒内扩散方程拟合较差。整个吸附过程符合准二级动力学方程(R2=0.999,k2=0.367 g·mg-1·min-1),Elovich方程(R2=0.981,a=0.271 mg·g-1, b=0.083 mg·g-1·(lg min)-1)和准一级动力学方程(R2=0.927,k1=0.008 8 min-1)次之,颗粒内扩散方程(R2=0.785)最差。活性炭无纺布对镉的吸附过程是一种化学作用为主的吸附过程。对5.00 mg·L-1含镉水样,活性炭无纺布投放量为10 g·L-1时,吸附后水中镉的浓度小于0.10 mg·L-1,符合《污水综合排放标准》(GB 8978-1996)。活性炭无纺布可同时吸附镉,铜,铅,铬等重金属离子,选择性较差。但在电镀、采矿等实际废水中重金属种类复杂,适当提高吸附剂投放量,可同时去除多种重金属。利用活性炭无纺布吸附处理含镉水样,处理效果好、操作简单,可以作为去除水中镉的吸附剂,为含镉废水的处理提供了技术支持和理论基础。  相似文献   

11.
Enteromorpha prolifera was pyrolyzed to prepare activated carbon using chemical activation by zinc chloride. The effect of activation parameters such as activation temperature, weight ratio (Enteromorpha prolifera to ZnCl2), and activation time was investigated. The BET results showed that the surface area and pore volume of activated carbons were achieved as high as 1722 m2/g and 1.11 cm3/g, respectively, in the optimal activation conditions. Batch adsorption studies were carried out to study the adsorption properties of cationic red X-GRL onto activated carbon by varying the parameters like initial solution pH, contact time, and temperature. The kinetic studies showed that the adsorption data followed a pseudo second-order model. The isotherm analysis indicated that the adsorption data could be represented by the Langmuir isotherm model. The Langmuir monolayer adsorption capacity of cationic red X-GRL was estimated as 263.16 mg/g at pH 6.0.  相似文献   

12.
The results of phenol adsorption-desorption isotherms (at 310 K) measured on the series of activated carbons (D43/1, NORIT RO 0.8, D55/2) are presented. The effect of carbon surface chemical composition on phenol adsorption determined at real oxic and anoxic conditions is discussed. To obtain the real anoxic conditions the two station controlled atmosphere chamber with two catalyst heater units (Plas Labs, Lansing, MI, USA) was applied. It is shown that the adsorption under oxic conditions is always larger than that determined for anoxic ones for all studied carbons. The analysis of those differences shows that in the range of micropore filling they decrease with the equilibrium phenol mole fraction in solution. Contrary they increase after micropores being filled. The average differences between the adsorption properties are the linear function of the concentration of surface acidic groups (assigned from the Boehm's method as “carboxylic”) calculated per the apparent BET surface area of studied carbons.  相似文献   

13.
活性碳纤维(ACF)可用于低温吸附催化脱除燃煤烟气中的SO2,大量实验证明对ACF表面进行掺氮改性可显著提高其脱硫率,但理论研究相对较少,且不同种类含氮官能团对脱硫的影响仍未有定论.为此,采用密度泛函理论(DFT)和波函数分析对不同种类含氮官能团修饰的ACF的表面结构、静电相互作用、极化和分子轨道进行了对比研究.结果表明氮修饰不仅有利于增强ACF与吸附质分子SO2间的静电相互作用,其催化氧化和感应SO2分子的能力也有所提高.其中,石墨化氮掺杂的ACF的极性指数相较掺杂前提高了71.33%,性能改善最为显著,作为SO2分子的选择性传感器和吸附催化剂颇具潜力.  相似文献   

14.
The aim of this work was to investigate the role of porous and chemical heterogeneities of activated carbons in the adsorption of naphthalene from aqueous media. A commercially available activated carbon was used as the adsorbent, and its surface heterogeneity was systematically altered by heat treatment at 450 and 850 °C, obtaining a series of carbons with various oxygen contents and similar surface functionalities. The results confirmed that the adsorption of naphthalene depends strongly on the pore size distribution of the adsorbent, particularly narrow microporosity. Moreover, oxygen functionalities reduced the accessibility and affinity of naphthalene to the inner pore structure via formation of hydration clusters. Consequently, the hydrophobic/hydrophilic character of the adsorbent is important, since it dominates the competitive adsorption of water. Adsorbents with a high non-polar character (i.e., low oxygen content) have proven to be more efficient for naphthalene adsorption.  相似文献   

15.
Selective adsorption of platinum group metals (PMG) on activated carbons from a multi-component model and technological solutions was proposed for the preparation of heterogeneous-supported catalysts. Activated natural anthracites and a nitrogen-containing synthetic carbon are considered as carriers for Pd-supported catalysts. Their catalytic activity was studied in the Pd-catalyzed reactions of hydrogen peroxide decomposition and chloride ions oxidation by manganese(III). On the base of the obtained results, novel high sensitive analytical methods both for direct determination of supported-metal quantity and palladium oxidation states on the surface of spent adsorbents are suggested.  相似文献   

16.
Hydrogen storage using carbon adsorbents: past, present and future   总被引:8,自引:0,他引:8  
Interest in hydrogen as a fuel has grown dramatically since 1990, and many advances in hydrogen production and utilization technologies have been made. However, hydrogen storage technologies must be significantly advanced if a hydrogen based energy system, particularly in the transportation sector, is to be established. Hydrogen can be made available on-board vehicles in containers of compressed or liquefied H2, in metal hydrides, via chemical storage or by gas-on-solid adsorption. Although each method possesses desirable characteristics, no approach satisfies all of the efficiency, size, weight, cost and safety requirements for transportation or utility use. Gas-on-solid adsorption is an inherently safe and potentially high energy density hydrogen storage method that could be extremely energy efficient. Consequently, the hydrogen storage properties of high surface area “activated” carbons have been extensively studied. However, activated carbons are ineffective in storing hydrogen because only a small fraction of the pores in the typically wide pore-size distribution are small enough to interact strongly with hydrogen molecules at room temperatures and moderate pressures. Recently, many new carbon nanostructured absorbents have been produced including graphite nanofibers and carbon multi-wall and single-wall nanotubes. The following review provides a brief history of the hydrogen adsorption studies on activated carbons and comments on the recent experimental and theoretical investigations of the hydrogen adsorption properties of the new nanostructured carbon materials. Received: 16 October 2000 / Accepted: 15 November 2000 / Published online: 9 February 2001  相似文献   

17.
The mechanism of reactive adsorption of dibenzothiophene (DBT) on a series of modified carbons derived from the recycled PET was investigated. The influence of the oxygen functionalities of the adsorbent on the DBT adsorption capacity was explored. The results revealed that adsorption of DBT on activated carbons is governed by two types of contributions: physisorption on the microporous network of the carbons and chemisorption. Introduction of surface acidic groups enhanced the performance of the carbons as a result of their specific interactions with DBT. The nature of the acidic groups is a decisive factor in the selectivity of the reactive adsorption process.  相似文献   

18.
Using grand canonical Monte Carlo simulation we show, for the first time, the influence of the carbon porosity and surface oxidation on the parameters of the Dubinin-Astakhov (DA) adsorption isotherm equation. We conclude that upon carbon surface oxidation, the adsorption decreases for all carbons studied. Moreover, the parameters of the DA model depend on the number of surface oxygen groups. That is why in the case of carbons containing surface polar groups, SF(6) adsorption isotherm data cannot be used for characterization of the porosity.  相似文献   

19.
Adsorption of hydrogen gas was tested in microporous doped carbons: activated carbon (1600 m2/g) and single wall carbon nanotubes (SWNTs). The isotherms of adsorption of LiC18 and KC24 doped microporous activated carbons were determined in the range [0–30 bar] at room temperature and 77 K. The chemisorption ratio observed at room temperature increases with increasing the alkali/carbon rate. The isotherm profiles of doped activated carbon at 77 K show no clear enhancement of the sorption ratio compared to the raw activated carbon.The adsorption sites of potassium doped SWNTs with closed end were determined by neutron diffraction experiment using deuterium gas. The K-doped SWNTs were found only slightly intercalated by K ions so that empty cavities are preserved in between the tubes. At room temperature, the chemisorption of deuterium was not observed in doped SWNTs bundles, but only in the KC8 graphite intercalation compound impurities. At low temperature, the isotherms analysis and neutron diffraction experiments have shown that D2 molecules are physisorbed in the free interstitial voids in between the tubes within the bundles.  相似文献   

20.
The heterogeneity of activated carbons is investigated on the basis of adsorption isotherms of phenol from dilute aqueous solutions at different values of pH in the solution. The original carbon studied was prepared from polyethyleneterephtalate (PET). Its various oxygen surface functionalities were systematically changed by additional nitric acid and heat treatments. The Dubinin-Astakhov adsorption-isotherm equation was used to evaluate the parameters characterizing the adsorption of phenol from dilute water solutions on activated carbon surfaces. Adsorption energy distribution functions were calculated by the INTEG algorithm, based on a regularization method. Analysis of distribution functions for activated carbons provides significant comparative information about their energetic heterogeneity. Moreover, a comparison of the resulting energies obtained from the distributions can be made with enthalpic data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号