首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To improve hydrophilicity and blood compatibility properties of polyurethane (PU) film, we chemically induced graft copolymerization of 2-hydroxyethyl methacrylate (HEMA) onto the surface of polyurethane film using benzoyl peroxide as an initiator. The effects of grafting temperature, grafting time, monomer and initiator concentrations on the grafting yields were studied. The maximum grafting yield value was obtained 0.0275 g/cm2 for HEMA. Characterization of the films was carried out by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), water contact angle measurements. ATR-FTIR data showed that HEMA was successfully grafted onto the PU films surface. Water contact angle measurement demonstrated the grafted films possessed a relatively hydrophilic surface. The blood compatibility of the grafted films was preliminarily evaluated by a platelet-rich plasma adhesion test and hemolysis test. The results of platelet adhesion experiment showed that polyurethane grafted polymerization with monomer of 2-hydroxyethyl methacrylate had good blood compatibility featured by the low platelet adhesion. Hemolysis rate of the PU-g-PHEMA films was dramatically decreased than the ungrafted PU films. This kind of new biomaterials grafted with HEMA monomers might have a potential usage for biomedical applications.  相似文献   

2.
To tailor the interfacial interaction in magnetic metal nanoparticles filled polymer composites, the surfaces of iron, cobalt and nickel nanoparticles were grafted by irradiation polymerization. In the current report, effects of grafting conditions, including irradiation atmosphere, irradiation dose and monomer concentration, on the grafting reaction are presented. The interaction between the nanoparticles and the grafted polymer was studied by thermal analysis and X-ray photoelectron spectrometry. It was found that there is a strong interfacial interaction in the form of electrostatic bonding in the polymer-grafted nanoparticles. The dispersibility of the modified nanoparticles in chloroform was significantly improved due to the increased hydrophobicity.  相似文献   

3.
This contribution demonstrates a method for PVDF microporous membrane modification via surface-initiated activators generated by electron transfer atom transfer radical polymerization (AGET ATRP) directly from the membrane surface. Three hydrophilic polymers, poly(2-(N,N-dimethylamino) ethyl methacrylate) (PDMAEMA), poly(2-oligo (ethylene glycol) monomethyl ether methacrylate) (POEGMA), and poly(2-hydroxyethyl methacrylate) (PHEMA), were grafted from the PVDF membrane surface in aqueous solution at room temperature. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) confirmed the successful covalent tethering of the polymer chains onto the PVDF membrane surface. The gravimetry results indicated an approximately linear increase of the graft yields, up to about 330 μg/cm2 for DMAEMA and 470 μg/cm2 for both HEMA and OEGMA, with the polymerization time. Block copolymer brushes were prepared by chain extension. Water contact angle decreased over 50% for high yields, indicating improved surface hydrophilicity. The effects of the graft polymerization on membrane surface morphology, pore structure and permeability were investigated. It was found that the surface roughness was decreased and the pore size distribution was narrowed. The membrane permeability increased at low graft yields due to the enhanced hydrophilicity and decreased at high graft yields due to the overall reduction of the pore diameters.  相似文献   

4.
Graft polymerization of acrylic acid (AA) onto porous polyethersulfone (PES) membrane surfaces was developed using corona discharge in atmospheric ambience as an activation process followed by polymerization of AA in aqueous solution. The effects of the corona parameters and graft polymerization conditions on grafting yield (GY) of AA were investigated. The grafting of AA on the PES membranes was confirmed by ATR-FTIR and X-ray photoelectron spectroscopy (XPS) analysis. Porosimetry measurements indicate the average pore diameters and porosities of the modified membranes decrease with the increase of the GY. The hydrophilicity and surface wetting properties of the original and modified membranes were evaluated by observing the dynamic changes of water contact angles. It is found that the grafting of AA occurs not only on the membrane surfaces, but also on the pore walls of the cells inside the membrane. The permeability experiments of protein solution reveal that the grafting of PAA endows the modified membranes with enhanced fluxes and anti-fouling properties. The optimized GY of AA is in the range of 150-200 μg/cm2. In addition, the tensile experiments show the corona discharge treatment with the power lower than 150 W yields little damage to the mechanical strength of the membranes.  相似文献   

5.
The radiation induced graft polymerization is a well-known method to obtain new materials. Until recently, only conventional radiation sources, such as Co-60 and electron beams, were used. Moreover, part of the damage induced in polymers by heavy ions can produce active sites (peroxides and hydroperoxides) that are useful to initiate grafting reactions. Maleic anhydride (MAH) was grafted onto polypropylene (PP) wax with a number-average molecular weight (Mn) of 8000 by gamma pre-irradiation technique. Effects of total dose, monomer concentration, reaction time, and temperature on percentage of grafting are studied in detail. It is shown that the optimum conditions for grafting are temperature of 70 °C and total dose of 14.4 kGy. PP-g-MAH is characterized by infrared spectrum. Differential scanning calorimetry shows that the compatibility of PP-g-MAH is better than that of PP.  相似文献   

6.
We have successfully synthesized a kind of novel silsesquioxane mixture that can be used to modify the surface of biomaterial polyurethane (PU) for the purpose of making silsesquioxane/PU as low-price and high-quality biomaterial. HPLC, FTIR and 29Si NMR are used to characterize as-synthesized silsesquioxane mixture. XPS figure and SEM images show the silsesquioxane particles really self-assemble on the PU surface. Contact angle measurements verify that there is a large hysteresis loop, which relates to low- and high-surface free energy component on the surface. Platelet adsorption at 90 min of PU/silsesquioxane mixture is lower than that of poly(tetrafluoroethylene) (PTFE) and PU (two-way ANOVA, p < 0.05). Furthermore, SEM images show “island” morphologic pattern with Cooper grades I platelet adsorption morphology on the smooth PU/silsesquioxane surface, and mechanic test shows that the samples with silsesquioxane mixture can increase mechanic property of PU. On the basis of these results, we conclude that this kind of nanocomposite has promise for application in biomaterials.  相似文献   

7.
The influence of interfacial structure on interfacial properties between activated carbon filler and surrounding organic matrix of composites has been studied by infrared and NMR spectroscopy. Urea, semicarbazide and ethylurethane, component parts of polyurethane, have been used as organic model compounds in order to predict the interactions between the activated carbon surface and polar groups of real polyurethane molecule. It was shown that organic matrix/activated carbon interphase presented a region where the filler and matrix phases were chemically and/or physically combined. The spectra of the organic matrix undergo significant changes with increase of carbon content. Due to the surface reactive functionalities the activated carbon is considered not only as filler, influenced on the sorption properties of the composition, but also as a physicochemical modifier of the polyurethane matrix.  相似文献   

8.
The grafting of acrylic acid (AA) monomer (CH2CHCOOH) on polyamide 6.6 monofilaments (PA 6.6) using benzoyl peroxide (BPO) as initiator was carried out in order to enhance the hydrophilic nature of fibers. The grafting rate depends on the AA concentration, the BPO concentration, the time and the temperature of reaction.The best conditions for optimum rate of grafting were obtained with a AA concentration of 0.5 M, a BPO concentration of 0.03 M, a reaction temperature of T = 85 °C and a reaction time of 120 mn.The fiber surface has been investigated by many experimental techniques of characterization such as Fourier transform infrared spectroscopy (FTIR), calorimetric analysis (DSC), scanning electron microscopy (SEM), and contact angle measurements.The effect of grafting of acrylic acid onto PA 6.6 fibers on their moisture and mechanical resistances was analyzed from water sorption and elongation at break measurements.The analysis of the experimental data shows clearly the efficiency of the grafting reaction used, leading to a significant increase of the hydrophilic character of the PA 6.6 surface.  相似文献   

9.
The graft polymerization of acrylic acid (AAc) was carried out onto poly(tetrafluoroethylene) (PTFE) films that had been pretreated with remote argon plasma and subsequently exposed to oxygen to create peroxides. Peroxides are known to be the species responsible for initiating the graft polymerization when PTFE reacts with AAc. We chose different parameters of remote plasma treatment to get the optimum condition for introducing maximum peroxides (2.87 × 10−11 mol/cm2) on the surface. The influence of grafted reaction conditions on the grafting degree was investigated. The maximum grafting degree was 25.2 μg/cm2. The surface microstructures and compositions of the AAc grafted PTFE film were characterized with the water contact angle meter, Fourier-transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). Contact angle measurements revealed that the water contact angle decreased from 108° to 41° and the surface free energy increased from 22.1 × 10−5 to 62.1 × 10−5 N cm−1 by the grafting of the AAc chains. The hydrophilicity of the PTFE film surface was greatly enhanced. The time-dependent activity of the grafted surface was better than that of the plasma treated film.  相似文献   

10.
In order to achieve good dispersion of nano-SiO2 and increase the interactions between nano-SiO2 and PU matrix, nano-SiO2 was firstly modified with poly(propylene glycol) phosphate ester (PPG-P) which was a new polymeric surfactant synthesized through the esterification of poly(propylene glycol) (PPG) and polyphosphoric acid (PPA). Then a series of polyurethane (PU)/SiO2 nanocomposites were prepared via in situ polymerization. The surface modification of nano-SiO2, the microstructure and the properties of nanocomposites were investigated by FTIR, SEM, XRD and TGA. It was found that good dispersion of nano-SiO2 achieved in PU/SiO2 nanocomposite after the modification with PPG-P. The segmented structures of PU were not interfered by the presence of nano-SiO2 in these nanocomposites.  相似文献   

11.
The couple sulfonato/Si(1 1 1)-7 × 7 leads to remarkable 2D chiral molecular assembly with a stability improved at room temperature. The voltage-dependency of the STM images has been experimentally investigated and the correlation between STM images and PDOS has been studied. The proposed empirical model of the adsorption of molecules on Si(1 1 1)-7 × 7 has been justified by the experimental and theoretical data.  相似文献   

12.
The photon transmission technique was used to study the phase transitions of a liquid crystalline acrylate monomer, 6-(4-cyanobiphenyl-4′oxy)hexyl acrylate (LC6), its homopolymer (PLC6) and its graft copolymer (GLC6) with polytetrahydrofuran grafts. The phase transitions were also confirmed by DSC and polarizing microscopy. We observed the phase transition sequence isotropic–nematic–smectic A–smectic C in the LC6 monomer. In PLC6 and GLC6 polymers, the nematic and smectic A phases appear dominant. The apparent nematic–smectic A transition is of first order in PLC6 and of second order in GLC6, with the transition temperature remaining the same. The effects of quenched random constraints introduced in GLC6 are consistent with the theory of quenched random interactions. The critical exponents were also evaluated.  相似文献   

13.
Electron beam processing of poly(ethylene terephthalate) (PET) films is found to promote significant changes in the melting heat, intrinsic viscosity and polymer film-liquid (water, isooctane and toluene) boundary surface tension. These properties are featured with several maximums depending on the absorbed dose and correlating with the modification of PET surface functionality. Studies using adsorption of acid-base indicators and IR-spectroscopy revealed that the increase of PET surface hydrophilicity is determined by the oxidation of methylene and methyne groups. Electron beam treatment of PET films on the surface of N-vinylpyrrolidone aqueous solution provided graft copolymerization with this comonomer at optimum process parameters (energy 700 keV, current 1 mA, absorbed dose 50 kGy).  相似文献   

14.
A thermal-induced surface crosslinking process was employed to perform a hydrophilic surface modification of PES porous membranes. Difunctional poly(ethylene glycol) diacrylate (PEGDA) was used as the main crosslinking modifier. The addition of trifunctional trimethylolpropane trimethylacrylate (TMPTMA) into the reaction solutions accelerated the crosslinking progress of PEGDA on PES membranes. The membrane surface morphology and chemical composition were characterized by scanning electron microscopy (SEM) and FTIR-ATR spectroscopy. The mass gains (MG) of the modified membranes could be conveniently modulated by varying the PEGDA concentration and crosslinking time. The measurements of water contact angle showed that the hydrophilicity of PES membranes was remarkably enhanced by the coating of crosslinked PEGDA layer. When a moderate mass gain of about 150 μg/cm2 was reached, both the permeability and anti-fouling ability of PES membranes could be significantly improved. Excessive mass gain not only contributed little to the anti-fouling ability, but also brought a deteriorated permeability to PES membranes.  相似文献   

15.
An ultrasonic nanocrystal surface modification (UNSM) technique, at 3 different vibration strike numbers (34,000 times/mm2, 45,000 times/mm2, 68,000 times/mm2) was used to modify the surface structure and properties of S45C. These three process conditions respectively produced 2 μm, 12 μm and 30 μm nanocrystal layers. UNSM technique improves the following mechanical properties: microhardness, surface roughness, and compressive residual stress. Also, fatigue life increased with the vibration strike number. UNSM C3 (with the vibration strike number of 68,000 times/mm2) has improved the fatigue strength by as much as 33% for S45C. Optical microscope pictures show that cracks usually initiate from intergranular microcracks on the surface and then extend along the tip traces of UNSM which are considered as process defects. A simple math model (tearing adhesive plaster model) has been made to analyze the initiation and growth of cracks. Though most of the cracks initiate at the surface of specimens, surface nanocrystal layers can help to retard crack initiation. In S45C, the efficiency of crack resistance is more than 48%.the vibration strike number  相似文献   

16.
This study investigated the surface characteristics and in vitro biocompatibility of a titanium (Ti) oxide layer incorporating the manganese ions (Mn) obtained by hydrothermal treatment with the expectation of utilizing potent integrin-ligand binding enhancement effect of Mn for future applications as an endosseous implant surface. The surface characteristics were evaluated by scanning electron microscopy, thin-film X-ray diffractometry, X-ray photoelectron spectroscopy, optical profilometry and inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The in vitro biocompatibility of the Mn-containing Ti oxide surface was evaluated in comparison with untreated bare Ti using a mouse calvaria-derived osteoblastic cell line (MC3T3-E1). The hydrothermal treatment produced a nanostructured Mn-incorporated Ti oxide layer approximately 0.6 μm thick. ICP-AES analysis demonstrated that the Mn ions were released from the hydrothermally treated surface into the solution. Mn incorporation notably decreased cellular attachment, spreading, proliferation, alkaline phosphatase activity, and osteoblast phenotype gene expression compared with the bare Ti surface (p < 0.05). The results indicate that the Mn-incorporation into the surface Ti oxide layer has no evident beneficial effects on osteoblastic cell function, but instead, actually impaired cell behavior.  相似文献   

17.
In this study, we numerically synthesize a two-dimensional metallic nanostructure consisting of a Au half-space and two separate Ag elliptical cylinders by the simulated annealing (SA) method. The simulated nanostructure is so designed that the surface plasmon polariton (SPP) and the localized surface plasmon (LSP) are simultaneously excited at their common resonant wavelength (535 nm), leading to the enhancement of emission of a nearby dipole source. This enhancement effect is more significant than that of the case where only one of the SPP and LSP is excited. In numerically synthesizing a metallic nanostructure, we try to maximize both the downward emission (in the direction away from the metallic structure) and the emission efficiency. A cost function is defined as some combination of the downward emission and the emission efficiency. We adjust the simulated structure by SA to minimize the cost function at a designated resonant wavelength, and calculate and analyze the spectra of downward emission and emission efficiency for the optimal structure. Other structures are also investigated for comparison. From numerical simulations, it is demonstrated that the enhancement of dipole emission is better for optimization at wavelength 535 nm than at other wavelengths. Note that the downward emission and the emission efficiency can reach maxima almost simultaneously when the SPP and the LSP couple effectively at a common resonant wavelength. This implies that the lighting efficiency of green light-emitting diodes (LEDs) can be increased by the coupling effect at a common resonant wavelength of SPP and LSP.  相似文献   

18.
A novel plasmonic nanolens formed by a tapered subwavelength metal slit surrounded by surface dielectric gratings is proposed and demonstrated numerically. By patterning surface corrugations on the output surface, the beam can be focused, by regulating the aperture, the focal length can be controlled effectively. Numerical simulations using Finite-Difference Time-Domain (FDTD) method coupled with anisotropic perfectly matched layer (APML) boundary conditions verify that the proposed metallic lens can focus the radiation on the scale of a wavelength below the substrate and the method is effective for the design of nano-optical devices such as optical microprobes.  相似文献   

19.
Kinetensin (KN) and its amino acids 1–8 fragment ([des‐Leu9]KN), neuromedin N (NMN), and xenopsin (XP) and its two analogs (human XP‐1/xenin‐8 and XP‐2) belong to the neurotensin family of peptides and are known to stimulate the growth of human tumors. In this work, we report surface‐enhanced Raman scattering (SERS) studies of these peptides and discuss their structures, orientation, and mode of adsorption onto a colloidal assembly of apparently randomly adhering Ag spheres with diameters of approximately 20 – 25 nm. We show that small alternations in both the amino acid composition and tertiary structure, which induce striking biological in vitro, were responsible for the observed spectroscopic changes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
A simple approach to control the attachment of gold nanoparticles (AuNPs) onto the indium tin oxide (ITO) surfaces is reported. Adjusting the concentration of trisodium citrate in the Au colloid solution for the seeding process from 1 to 50 mM in the seed-mediated growth method, the dramatic changes in the SEM images and actual color were observed indicating the changes in nanostructures of AuNPs formed on the ITO surfaces. Whereas the attachment of smaller AuNPs with higher density were observed when 25 mM citrate ions were added in the seed solution, larger AuNPs were observed to attach at 50 mM. On the basis of this difference and the surface SEM images observed just after seeding, the roles of citrate ions were discussed. Consequently, it was inferred that the citrate ions affected the growth process as well as the seeding process. The repulsive power expected from the increased negative charges of citrate ions were not significant, but rather the dense attachment was promoted as the peculiar effect of citrate ions. Such control of the AuNPs attachment on ITO would be practically effective because the dense attachment can be performed by just changing the composition of the seed solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号