首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Zinc peroxide and zinc oxide nanoparticles were prepared and self-assembled hybrid nanolayers were built up using layer-by-layer (LbL) technique on the surface of glass substrate using the layer silicate hectorite and an anionic polyelectrolyte, sodium polystyrene sulfonate (PSS). Light absorption, interference and morphological properties of the hybrid films were studied to determine their thickness and refractive index. The influence of layer silicates and polymers on the self-organizing properties of ZnO2 and ZnO nanoparticles was examined. X-ray diffraction revealed that ZnO2 powders decomposed to ZnO (zincite phase) at relatively low temperatures (less than 200 °C). The optical thickness of the films ranged from 190 to 750 nm and increased linearly with the number of layers. Band gap energies of the ZnO2/hectorite films were independent from the layer thickness and were larger than that of pure ZnO2 nanodispersion. Decomposition of ZnO2 to ZnO and O2 at 400 °C resulted in the decrease of the band gap energy from 3.75 to 3.3 eV. Concomitantly, the refractive index increased in correlation with the formation of the zincite ZnO phase. In contrast, the band gap energies of the ZnO2/PSS hybrid films decreased with the thickness of the nanohybrid layers. We ascribe this phenomenon to the steric stabilization of primary ZnO2 particles present in the confined space between adjacent layers of hectorite sheets.  相似文献   

2.
In this work the optical and the gas sensing properties of thick TiO2 waveguide films, produced by pulsed laser deposition, were investigated by m-line spectroscopy. The films were deposited on (0 0 1) SiO2 substrates at temperature of 100 °C. The thickness of the films was measured to be in the range from 650 to 1900 nm and the roughness increases from 5 to 14.6 nm. High quality mode spectra, consisted of thin and bright TE and TM modes, were observed in the films with thickness up to 1200 nm. All the films revealed anisotropic optical properties. Gas sensitivity of the films to CO2 was examined at room temperature on the basis of the variations of the refractive index. CO2 concentration of 3 × 104 ppm was detected, which corresponds to a refractive index variation of about 1 × 10−4. The crystal structure and the optical transmittance of the films were also presented and discussed.  相似文献   

3.
Fluorine (F) incorporated polycrystalline SnO2 films have been deposited onto glass substrates by ultrasonic spray pyrolysis technique. To possess information about the electrical properties of all films, their electrical conductivities were investigated depending on the temperature, and their activation and trap energies were analyzed. The crystalline structure, surface properties and elemental analysis of the SnO2 films were examined to determine the effect of the F element. After all investigations, it was concluded that each fluorine incorporation rate has a different and important effect on the physical properties, and SnO2:F (3 at%) films were found to be the most promising sample for energy conversion devices, especially as conducting electrode in solar cells with its improved structural and electrical properties as compared to others.  相似文献   

4.
5.
Be3N2 thin films have been grown on Si(1 1 1) substrates using the pulsed laser deposition method at different substrate temperatures: room temperature (RT), 200 °C, 400 °C, 600 °C and 700 °C. Additionally, two samples were deposited at RT and were annealed after deposition in situ at 600 °C and 700 °C. In order to obtain the stoichiometry of the samples, they have been characterized in situ by X-ray photoelectron (XPS) and reflection electron energy loss spectroscopy (REELS). The influence of the substrate temperature on the morphological and structural properties of the films was investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD). The results show that all prepared films presented the Be3N2 stoichiometry. Formation of whiskers with diameters of 100-200 nm appears at the surface of the films prepared with a substrate temperature of 600 °C or 700 °C. However, the samples grown at RT and annealed at 600 °C or 700 °C do not show whiskers on the surface. The average root mean square (RMS) roughness and the average grain size of the samples grown with respect the substrate temperature is presented. The films grown with a substrate temperature between the room temperature to 400 °C, and the sample annealed in situ at 600 °C were amorphous; while the αBe3N2 phase was presented on the samples with a substrate temperature of 600 °C, 700 °C and that deposited with the substrate at RT and annealed in situ at 700 °C.  相似文献   

6.
Al2O3/SiO2 films have been prepared by electron-beam evaporation as ultraviolet (UV) antireflection coatings on 4H-SiC substrates and annealed at different temperatures. The films were characterized by reflection spectra, ellipsometer system, atomic force microscopy (AFM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), respectively. As the annealing temperature increased, the minimum reflectance of the films moved to the shorter wavelength for the variation of refractive indices and the reduction of film thicknesses. The surface grains appeared to get larger in size and the root mean square (RMS) roughness of the annealed films increased with the annealing temperature but was less than that of the as-deposited. The Al2O3/SiO2 films maintained amorphous in microstructure with the increase of the temperature. Meanwhile, the transition and diffusion in film component were found in XPS measurement. These results provided the important references for Al2O3/SiO2 films annealed at reasonable temperatures and prepared as fine antireflection coatings on 4H-SiC-based UV optoelectronic devices.  相似文献   

7.
采用金属有机分解法(MOD)在石英衬底上沉积了SrTiO3薄膜。所制备的薄膜是晶格常数为a=b=c=3.90?的多晶结构。通过测量190—1100nm波段内的透射光谱,采用包络方法计算了薄膜的光学常数(折射率n和消光系数k)。结果表明,采用MOD方法制备的薄膜的折射率大于采用射频磁控溅射、溶胶—凝胶和化学气相沉积方法制备的薄膜的折射率;薄膜的折射率色散关系满足单振子模型,其中振子强度S0为0.88′1014m-2,振子能量E0为6.40eV;薄膜的禁带宽度为3.68eV。  相似文献   

8.
采用分子束外延的方法在BaF2(111)衬底上制备出了高质量的Pb1-xMnxSe(0≤x≤0.0681)薄膜.X射线衍射结果表明,Pb1-xMnxSe薄膜为立方相NaCl型结构,没有观察到MnSe相分离现象,薄膜的取向为平行于衬底(111)晶面.晶格常数随着Mn含量的增加逐渐减小,Mn含量由Vegard公式得到.通 关键词: 1-xMnxSe外延薄膜')" href="#">Pb1-xMnxSe外延薄膜 透射光谱 带隙 折射率  相似文献   

9.
Soft magnetic thin films of Ni, NiFe and NiFe2O4 were prepared using reactive magnetron sputtering in various deposition conditions. Experimentally observed soft magnetic property was compared and correlated with nanocrystalline structure evolution. Ni and NiFe deposited films are textured with fcc(111) phase preferred orientation. Accordingly, grain size and lattice parameter were calculated from X-ray diffraction (111) peak line width and 2θ peak position. Addition of reactive gas oxygen in deposition process has substantial effect on crystalline structure of film. There is phase transition from the ordered NiFe (111) structure to the NiFe2O4 nanocrystalline phase. The resulting film has shown small X-ray diffraction intensity peak corresponding to (311) and (400) orientation, indicating small amount of existing NiFe2O4 phase. The mechanism has been discussed to be responsible for nanocrystallization and amorphization of NiFe2O4 films. Magnetic measurement (M-H) loop reveal soft magnetic nature of films with magnetic anisotropy. The coercivity (Hc) of films is in accordance with random anisotropy model, where Hc reduced with grain size. The structural transformation was supported by Fourier transforms infrared spectroscopy measurement. The films are highly smooth with surface roughness in the range of ∼0.53-0.93 nm. NiFe2O4 films have shown lowest surface roughness with highest electrical resistivity values. The structural, surface, magnetic and infrared spectroscopy results are observed and analyzed.  相似文献   

10.
Polycrystalline PbSe1−xTex ingots were prepared by solid-state microwave synthesis. Thin films of PbSe1−xTex were then deposited onto clean glass substrates using vacuum evaporation technique. Their nanostructure morphologies and stoichiometric ratio were examined using scanning electron microscopy (SEM) and energy dispersive X-ray spectra (EDX). X-ray diffraction (XRD) patterns indicated that the lattice constants of PbSe1−xTex powders and thin films increased with the increasing amount of Te. From the electrical property measurements, the thin films were characterized by n-type behavior.  相似文献   

11.
A novel kind of La2O3 doped diamond-like carbon (DLC) films with thickness of 100-120 nm were deposited by unbalanced magnetron sputtering. Raman spectra and photoluminescence properties were measured by Raman spectrometer operated by 325 nm He-Cd laser and 514 nm Ar+ laser, respectively. The intensities of Raman spectra and photoluminescence are higher than those of pure DLC films. The La2O3 doped DLC films have the potential promising for the application of solar cell coatings.  相似文献   

12.
Tin oxide (SnO2) thin films were grown on Si (1 0 0) substrates using pulsed laser deposition (PLD) in O2 gas ambient (10 Pa) and at different substrate temperatures (RT, 150, 300 and 400 °C). The influence of the substrate temperature on the structural and morphological properties of the films was investigated using X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). XRD measurements showed that the almost amorphous microstructure transformed into a polycrystalline SnO2 phase. The film deposited at 400 °C has the best crystalline properties, i.e. optimum growth conditions. However, the film grown at 300 °C has minimum average root mean square (RMS) roughness of 3.1 nm with average grain size of 6.958 nm. The thickness of the thin films determined by the ellipsometer data is also presented and discussed.  相似文献   

13.
High-k gate dielectric HfO2 thin films have been deposited on Si(1 0 0) by using plasma oxidation of sputtered metallic Hf thin films. The optical and electrical properties in relation to postdeposition annealing temperatures are investigated by spectroscopic ellipsometry (SE) and capacitance-voltage (C-V) characteristics in detail. X-ray diffraction (XRD) measurement shows that the as-deposited HfO2 films are basically amorphous. Based on a parameterized Tauc-Lorentz dispersion mode, excellent agreement has been found between the experimental and the simulated spectra, and the optical constants of the as-deposited and annealed films related to the annealing temperature are systematically extracted. Increases in the refractive index n and extinction coefficient k, with increasing annealing temperature are observed due to the formation of more closely packed thin films and the enhancement of scattering effect in the targeted HfO2 film. Change of the complex dielectric function and reduction of optical band gap with an increase in annealing temperature are discussed. The extracted direct band gap related to the structure varies from 5.77, 5.65, and 5.56 eV for the as-deposited and annealed thin films at 700 and 800 °C, respectively. It has been found from the C-V measurement the decrease of accumulation capacitance values upon annealing, which can be contributed to the growth of the interfacial layer with lower dielectric constant upon postannealing. The flat-band voltage shifts negatively due to positive charge generated during postannealing.  相似文献   

14.
Microstructure and tribological properties of WS2/MoS2 multilayer films   总被引:2,自引:0,他引:2  
In this paper, a novel method, namely, magnetron sputtering and low temperature ion sulfurizing combined technique was used to fabricate the solid lubrication WS2/MoS2 multilayer films. Scanning Electron Microscopy (SEM) was used to observe the surface and worn scar morphologies. X-ray diffraction (XRD) was utilized to analyze the phase structure. The nano-hardness and elastic modulus of WS2/MoS2 multilayer films were surveyed by the nano-indentation tester. The friction and wear test were conducted on a ball-on-disk wear tester under dry sliding condition. The results obtained showed that the WS2/MoS2 multilayer films exhibited a lower friction coefficient and better wear-resistance when compared with single WS2 film and original 1045 steel.  相似文献   

15.
ZnO thin films were treated by high-pressure hydrogen (H2). Scanning electron microscope (SEM) images show that the surface morphology of ZnO films has been changed significantly by H2 treatment. X-ray diffraction patterns show that the Zn(OH)2 phases formed after H2 treatment. The X-ray photoelectron spectroscopy results indicate that H atoms were doped into the surface of ZnO by forming H-O-Zn bond. The phenomenon shows that it is easy to form O-H bond in ZnO rather than H interstitial atom under high-pressure hydrogen circumstance.  相似文献   

16.
甘平  辜敏  卿胜兰  鲜晓东 《物理学报》2013,62(7):78101-078101
应用分光光度计测量Te/TeO2-SiO2复合薄膜的透射光谱和吸收光谱, 在480nm附近观察到Te颗粒引起的等离子体共振吸收峰; 采用Z扫描技术研究了共振(激发波长为532 nm)和非共振情况下(激发波长1064 nm) 不同电位制备薄膜的Te颗粒状态与复合薄膜的三阶非线性极化率的关系. 基于有效介质理论对复合薄膜的三阶非线性效应进行分析, 研究Te颗粒大小对Te/TeO2-SiO2复合薄膜的非线性光学性质的影响及其产生机理. 结果表明薄膜制备过电位增大, Te的粒径减小, 颗粒数量多, 颗粒分布趋于均匀, 使得金属颗粒的表面等离子体共振峰红移, 吸收强度增强, 导致三阶非线性光学效应增强, χ(3)由1064 nm的5.12×10-7 esu增大为532 nm的8.11×10-7 esu. 关键词: 碲 二氧化碲 复合薄膜 三阶非线性  相似文献   

17.
Previous studies suggest that granular interfaces induce a natural and persistent super-hydrophilicity in TiO2-SiO2 composite thin films deposited by sol-gel route. This effect enables to consider self-cleaning applications that do not require a permanent UV exposure, whereas such a permanent exposure is necessary for pure TiO2 films. In this study, TiO2-SiO2 composite thin films have been deposited from a TiO2 anatase crystalline suspension and different SiO2 polymeric sols. Wettability studies show that a suitable control of the TiO2-SiO2 mixed sol formulations noticeably enhances persistence of the natural super-hydrophilicity in composite films. It is shown that, beside granular interface effects, modifications in the composite film morphologies can noticeably influence wettability properties.  相似文献   

18.
A series of ZnO1−xSx alloy films (0 ≤ x ≤ 1) were grown on quartz substrates by radio-frequency (rf) magnetron sputtering of ZnS ceramic target, using oxygen and argon as working gas. X-ray diffraction measurement shows that the ZnO1−xSx films have wurtzite structure with (0 0 2) preferential orientation in O-rich side (0 ≤ x ≤ 0.23) and zinc blende structure with (1 1 1) preferential orientation in S-rich side (0.77 ≤ x ≤ 1). However, when the S content is in the range of 0.23 < x < 0.77, the ZnO1−xSx film consists of two phases of wurtzite and zinc blende or amorphous ZnO1−xSx phase. The band gap energy of the films shows non-linear dependence on the S content, with an optical bowing parameter of about 2.9 eV. The photoluminescence (PL) measurement reveals that the PL spectrum of the wurtzite ZnO1−xSx is dominated by visible band and its PL intensity and intensity ratio of UV to visible band decrease greatly compared with undoped ZnO. All as-grown ZnO1−xSx films behave insulating, but show n-type conductivity for w-ZnO1−xSx and maintain insulating properties for β-ZnO1−xSx after annealed. Mechanisms of effects of S on optical and electrical properties of the ZnO1−xSx alloy are discussed in the present work.  相似文献   

19.
CrNx films were deposited on stainless steel and Si (1 1 1) substrates via medium frequency magnetron sputtering in a N2 + Ar mixed atmosphere. The influence of N2 content on the deposition rate, composition, microstructure, mechanical and tribological properties of the as-deposited films was investigated by means of the X-ray photoelectron spectrometry (XPS), X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), nanoindentation and tribometer testing. It was found that the N atomic concentration increased and the phase transformed from a mixture of Cr2N + Cr(N) to single-phase Cr2N, and then Cr2N + CrN to pure CrN phase with the increase of N2 content. The Cr 2p3/2 and N 1s of XPS spectra also confirmed the evolution of phase. Accordingly, all films exhibited a typical columnar structure which lies in the zone T of Thornton Model. The mixed Cr2N and Cr(N) phases showed low hardness and high friction coefficient. Cr2N possessed higher hardness than CrN while CrN exhibited lower friction coefficient.  相似文献   

20.
The optical and structural properties of magnesium fluoride films deposited by conventional e-beam evaporation and sputtering have been investigated herein. Deposition processes were carried out on the glass substrates in the absence of any reactive gases. The results show that the deposition method has a considerable effect on the optical and microstructural properties MgF2 film. Also, the results show that the deposition parameters of the sputtered MgF2 films can be easily controlled to yield the desired layer. The optical, chemical, and structural properties of the deposited MgF2 films were characterized by using spectrophotometer, X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, and atomic force microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号