首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thin films of CdIn2S4 have been deposited on to stainless steel and fluorine-doped tin oxide (FTO)-coated glass substrates from aqueous acidic bath using an electrodeposition technique. Ethylene diamine tetra-acetic acid (EDTA) disodium salt is used as complexing agent to obtain good-quality deposits by controlling the rate of the reaction. The different preparative parameters like concentration of bath, deposition time, bath temperature, pH of the bath have been optimized by the photoelectrochemical (PEC) technique in order to get good-quality photosensitive material. Different techniques have been used to characterize CdIn2S4 thin films. Optical absorption shows the presence of direct transition with band gap energy 2.17 eV. The X-ray diffraction (XRD) analysis of the as-deposited and annealed films showed the presence of polycrystalline nature. Energy-dispersive analysis by X-ray (EDAX) study for the sample deposited at optimized preparative parameters shows that the In-to-Cd ratio is almost 2 and S-to-Cd ratio is almost 4. Scanning electron microscopy (SEM) for samples deposited at optimized preparative parameters reveals that spherical grains are uniformly distributed over the surface of the substrate indicates the well-defined growth of polycrystalline CdIn2S4 thin film. PEC characterization of the films is carried out by studying photoresponse, spectral response and photovoltaic output characteristics. The fill factor (ff) and power conversion efficiency (η) of the cell are 69 and 2.94%, respectively.  相似文献   

2.
Pure and tin doped zinc oxide (Sn:ZnO) thin films were prepared for the first time by NSP technique using aqueous solutions of zinc acetate dehydrate, tin (IV) chloride fendahydrate and methanol. X-ray diffraction patterns confirm that the films are polycrystalline in nature exhibiting hexagonal wurtzite type, with (0 0 2) as preferred orientation. The structural parameters such as lattice constant (‘a’ and ‘c’), crystallite size, dislocation density, micro strain, stress and texture coefficient were calculated from X-ray diffraction studies. Surface morphology was found to be modified with increasing Sn doping concentration. The ZnO films have high transmittance 85% in the visible region, and the transmittance is found to be decreased with the increase of Sn doping concentration. The corresponding optical band gap decreases from 3.25 to 3.08 eV. Room temperature photoluminescence reveals the sharp emission of strong UV peak at 400 nm (3.10 eV) and a strong sharp green luminescence at 528 nm (2.34 eV) in the Sn doped ZnO films. The electrical resistivity is found to be 106 Ω-cm at higher temperature and 105 Ω-cm at lower temperature.  相似文献   

3.
Thin films of indium oxide, In2O3, were deposited by chemical spray pyrolysis technique, using aqueous alcoholic solutions of indium acetylacetonate (In-acac) precursor, on glass substrates kept at temperatures between 300 and 500 °C. The structural, optical, and electrical properties have been investigated as a function of deposition temperature, precursor concentration, carrier gas pressure, and substrate-to-nozzle distance. X-ray diffraction studies showed that the formation of nanocrystalline In2O3 films is preferentially oriented along (2 2 2) plane. The surface morphological modifications with substrate temperature were observed using scanning electron and atomic force microscopic studies. Optical transmittance behavior of the films in the visible and IR region was strongly affected by the deposition parameters. The optical band gap values observed are between 3.53 and 3.68 eV. The long wavelength limit of refractive index is 1.83. The Hall mobility is found to vary from 23 to 37 cm2/V s and carrier density is found nearly constant at about 1020 cm−3.  相似文献   

4.
CdIn2S4 thin films were prepared by pulse electrodeposition technique over F:SnO2 glass and stainless steel substrates in galvanostatic mode from an aqueous acidic bath containing CdSO4, InCl3 and Na2S2O3. The growth kinetics of the film has been studied and the deposition parameters such as electrolyte bath concentration, bath temperature, time of deposition, deposition current and pH of the bath are optimized. X-ray diffraction (XRD) analysis of the as deposited and annealed films shows polycrystalline nature. Energy dispersive analysis by X-ray (EDAX) confirms nearly stoichiometric CdIn2S4 nature of the film. Scanning electron microscope (SEM) studies show that, the deposited films are well adherent and grains are uniformly distributed over the surface of the substrate. The optical transmission spectra show a direct band gap of 2.16 eV. Conductivity measurements have been carried out at different temperatures and electrical parameters such as activation energy, trapped energy state and barrier heights etc. have been determined.  相似文献   

5.
Glass samples of composition xAl2O3-20PbO-(80−x)B2O3 and xWO3-xAl2O3-20PbO-(80−2x)B2O3 with x varying from 0% to 10% mole fraction are prepared by melt quench technique. The optical band gap decreases (from 3.21 to 2.37 eV) more for WO3-Al2O3-PbO-B2O3 glasses with an addition of WO3 content. The FTIR spectral studies have pointed out the conversion of structural units of BO3 to BO4 and WO4 to WO6 in these glasses. The increase in density from 4.51 to 5.80 g cm−3 for WO3-Al2O3-PbO-B2O3 glasses is observed with an increase in WO3 content. This is observed that the atomic structure changes more with the incorporation of WO3. This is due to the formation of WO6, WO4 and BO4 units.  相似文献   

6.
CuIn0.5Ga0.5Te2 (CIGT) thin films have been prepared by e-beam evaporation from a single crystal powder synthesized by direct reaction of constituent elements in a stoichiometric proportion. Post-depositional annealing has been carried out at 300 and 350 °C. The compositions of the films were determined by energy dispersive X-ray analysis (EDXA) and it was found that there was a remarkable fluctuation in atomic percentage of the constituent elements following to the post-depositional annealing. X-ray diffraction analysis (XRD) has shown that as-grown films were amorphous in nature and turned into polycrystalline structure following to the annealing at 300 °C. The main peaks of CuIn0.5Ga0.5Te2 and some minor peaks belonged to a binary phase Cu2Te appeared after annealing at 300 °C, whereas for the films annealed at 350 °C single phase of the CuIn0.5Ga0.5Te2 chalcopyrite structure was observed with the preferred orientation along the (1 1 2) plane. The effect of annealing on and near surface regions has been studied using X-ray photoelectron spectroscopy (XPS). The results indicated that there was a considerable variation in surface composition following to the annealing process. The transmission and reflection measurements have been carried out in the wavelength range of 200-1100 nm. The absorption coefficients of the films were found to be in the order of 104 cm−1 and optical band gaps were determined as 1.39, 1.43 and 1.47 eV for as-grown and films annealed at 300 and 350 °C, respectively. The temperature dependent conductivity and photoconductivity measurements have been performed in the temperature range of −73 to 157 °C and the room temperature resistivities were found to be around 3.4 × 107 and 9.6 × 106 (Ω cm) for the as-grown and annealed films at 350 °C, respectively.  相似文献   

7.
Glass samples of compositions 20PbO-80B2O3 and xWO3—(20−x) ZnO-20PbO-60B2O3 with x varying from 0% to 10% mole fraction are prepared by the melt quench technique. Decrease in the band gap from 2.86 to 2.16 eV for ZnO-PbO-B2O3 glasses with an increase in the WO3 content has been observed and discussed. The FTIR spectral studies have pointed out the conversion of structural units of BO3 to BO4 and WO4 to WO6 with the presence of W-O-W vibration of tungsten and incorporation of ZnO4 structural units of zinc in these glasses. The increase in density from 2.75 to 4.03 gcm−3 for ZnO-PbO-B2O3 glasses is observed with an increase in WO3 content. Due to the formation of WO6, WO4 and BO4 units, changes in the atomic structure with WO3 composition are observed and discussed.  相似文献   

8.
TiO2 doped WO3 thin films were deposited onto glass substrates and fluorine doped tin oxide (FTO) coated conducting glass substrates, maintained at 500 °C by pyrolytic decomposition of adequate precursor solution. Equimolar ammonium tungstate ((NH4)2WO4) and titanyl acetyl acetonate (TiAcAc) solutions were mixed together at pH 9 in volume proportions and used as a precursor solution for the deposition of TiO2 doped WO3 thin films. Doping concentrations were varied between 4 and 38%. The effect of TiO2 doping concentration on structural, electrical and optical properties of TiO2 doped WO3 thin films were studied. Values of room temperature electrical resistivity, thermoelectric power and band gap energy (Eg) were estimated. The films with 38% TiO2 doping in WO3 exhibited lowest resistivity, n-type electrical conductivity and improved electrochromic performance among all the samples. The values of thermoelectric power (TEP) were in the range of 23-56 μV/K and the direct band gap energy varied between 2.72 and 2.86 eV.  相似文献   

9.
Zinc sulfide thin films were prepared on glass substrates at room temperature using a chemical bath deposition method. The obtained films were annealed at temperatures ranging from 100 to 500 °C in steps of 100 °C for 1 h. The films were characterized by X-ray diffraction (XRD), Raman spectroscopy, energy dispersive X-ray analysis (EDX), optical absorption spectra, and electrical measurements. X-ray diffraction analysis indicates that the deposited films have an amorphous structure, but after being annealed at 500 °C, they change to slightly polycrystalline. The optical constants such as the refractive index (nr), the extinction coefficient (k), and the real (ε1) and imaginary (ε2) parts of the dielectric constant are calculated depending on the annealing temperature. Aside from the ohmic characteristics of the I-V curve, a nonlinear I-V curve owing to the Schottky contact is also found, and the barrier heights (?bn) for Au/n-ZnS and In/n-ZnS heterojunctions are calculated. The conductivity type was identified by the hot-probe technique.  相似文献   

10.
ZnO–As2O3–Sb2O3 glasses of varying concentrations of Sb2O3 with ZnO (ranging from 5 to 45 mol%) are prepared. A number of studies, including differential thermal analysis, and study of spectroscopic properties (viz., optical absorption and IR spectra) and dielectric properties (constant ε′, loss tan δ and ac conductivity σac) over a wide range of frequency and temperature of these glasses are carried out. Analyses of the results of these investigations have indicated that the glasses containing higher concentrations of Sb2O3 are more suitable for non-linear optical (NLO) applications.  相似文献   

11.
In this work, highly oriented pure and Tin-doped Titanium dioxide (Sn-doped TiO2) with porous nature photoelectrodes were deposited on ITO glass plates using spray pyrolysis technique. The XRD pattern revealed the formation of anatase TiO2 with the maximum intensity of (101) plane while doping 6 at% of Sn. The morphological studies depicted the porous nature with the uniform arrangement of small-sized grains. The presence of tin confirmed with the EDX spectra. The size of particles of 13 nm was observed from High Resolution Transmission Electron Microscopy (HR-TEM) analysis. The average transmittance was about 85% for the doped photoelectrode and was observed for the photoelectrode deposited with 6 at% of tin, with decreased energy band gap. The PL study showed the emission peak at 391 nm. The maximum carrier concentration and Hall mobility was observed for the photoelectrode deposited with 6 at% of tin. With these studies, the DSSCs were prepared separately with the dye extracted from Hibiscus Rosasinesis and Hibiscus Surttasinesis and their efficiency was maximum for the DSSC prepared with 6 at% of tin.  相似文献   

12.
Thin films of ZnO have been prepared on glass substrates at different thicknesses by spray pyrolysis technique using 0.2 M aqueous solution of zinc acetate. X-ray diffraction reveals that the films are polycrystalline in nature having hexagonal wurtzite type crystal structure. The resistivity at room temperature is of the order 10−2 Ω cm and decreased as the temperature increased. Films are highly transparent in the visible region. The dependence of the refractive index, n, and extinction coefficient, k, on the wavelength for a sprayed film is also reported. Optical bandgap, Eg, has been reported for the films. A shift from Eg = 3.21 eV to 3.31 eV has been observed for deposited films.  相似文献   

13.
In this work, the synthesis of molecular materials formed from A2[TiO(C2O4)2] (A = K, PPh4) and 1,8 dihydroxyanthraquinone is reported. The synthesized materials were characterized by atomic force microscopy (AFM), infrared (IR) and ultraviolet-visible (UV-vis) spectroscopy. IR spectroscopy showed that the molecular-material thin-films, deposited by vacuum thermal evaporation, exhibit the same intra-molecular vibration modes as the starting powders, which suggests that the thermal evaporation process does not alter the initial chemical structures. Electrical transport properties were studied by dc conductivity measurements. The electrical activation energies of the complexes, which were in the range of 0.003-1.16 eV, were calculated from Arrhenius plots. Optical absorption studies in the wavelength range of 190-1090 nm at room temperature showed that the optical band gaps of the thin films were around 1.9-2.3 eV for direct transitions Egd. The cubic NLO effects were substantially enhanced for materials synthesized from K2[TiO(C2O4)2], where χ(3) (−3ω; ω, ω, ω) values in the promising range of 10−12 esu have been evaluated.  相似文献   

14.
Pure and WO3 doped CeO2-PbO-B2O3 glasses are prepared by the melt-quench technique. The structural and optical analyses of glasses are carried out by XRD, FTIR, density and UV-vis spectroscopic measurement techniques. FTIR analysis indicates the transformation of structural units of BO3 into BO4 with W-O-W vibration and the presence of WO4 and WO6 units observed with increase in WO3 contents. Decrease in band gap for CeO2-PbO-B2O3 glasses from 2.89 to 2.30 eV and for WO3 doped glasses from 2.89 to 1.95 eV has been observed and discussed. This decrease in band gap with WO3 doping approaches to semiconductor behavior. It shows that the presence of WO3 in the glass samples causes more compaction of the borate network due to the formation of BO4 groups and the presence of WO4 and WO6 groups, which result in a decrease in the optical band gap energy and increase in the density.  相似文献   

15.
Copper indium disulphide (CuInS2) is an efficient absorber material for photovoltaic applications. In this work Zn (0.02 and 0.03 M) doped CuInS2 thin films are (Cu/In = 1.25) deposited onto glass substrates in the temperature range 300–400 °C. XRD patterns depict, Zn-doping facilitates the growth of CuInS2 thin films along (1 1 2) preferred plane and other characteristic planes. Optical studies show, 90% of light transmission occurs in the IR regions; hence Zn-doped CuInS2 can be used as an IR transmitter. The absorption coefficient in the UV–vis region is found to be in the order of 104–105 cm−1. Optical band gap energies increase with increase of temperatures (0.02 M – (1.93–2.05 eV) and 0.03 M – (1.94–2.04 eV)). Well defined, broad Blue and Green band emissions are exhibited. Resistivity study reveals the deposited films exhibit semiconducting nature. Zn species can be used as a donor and acceptor impurity in CuInS2 films to fabricate efficient solar cells and photovoltaic devices.  相似文献   

16.
Al or Sn doped ZnO films were deposited by spray pyrolysis using aqueous solutions. The films were deposited on either indium tin oxide coated or bare glass substrates. ZnCl2, AlCl3 and SnCl2 were used as precursors. The effect of ZnCl2 molar concentration (0.1-0.3 M) and doping percentage (2-4% AlCl3 or SnCl2) have been investigated. The main goal of this work being to grow porous ZnO thin films, small temperature substrates (200-300 °C) have been used during the spray pyrolysis deposition. It is shown that, if the X-ray diffraction patterns correspond to ZnO, the films deposited onto bare glass substrate are only partly crystallized while those deposited onto ITO coated glass substrate exhibit better crystallization. The homogeneity of the films decreases when the molar concentration of the precursor increases, while the grain size and the porosity decrease when the Al doping increases. The optical study shows that band tails are present in the absorption spectrum of the films deposited onto bare glass substrate, which is typical of disordered materials. Even after annealing 4 h at 400 °C, the longitudinal resistivity of the films is quite high. This result is attributed to the grain boundary effect and the porosity of the films. Effectively, the presence of an important reflection in the IR region in samples annealed testifies of a high free-carriers density in the ZnO crystallites. Finally it is shown that when deposited in the same electrochemical conditions, the transmission of a polymer film onto the rough sprayed ZnO is smaller than that onto smooth sputtered ZnO.  相似文献   

17.
The structural, microstructural and magnetic properties of nanoferrite NiFe2O4 (NF), CoFe2O4 (CF) and MnFe2O4 (MF) thin films have been studied. The coating solution of these ferrite films was prepared by a chemical synthesis route called sol-gel combined metallo-organic decomposition method. The solution was coated on Si substrate by spin coating and annealed at 700 °C for 3 h. X-ray diffraction pattern has been used to analyze the phase structure and lattice parameters. The scanning electron microscopy (SEM) and atomic force microscopy (AFM) have been used to show the nanostructural behavior of these ferrites. The values of average grain's size from SEM are 44, 60 and 74 nm, and from AFM are 46, 61 and 75 nm, respectively, measured for NF, CF and MF ferrites. At room temperature, the values of saturation magnetization, Ms∼50.60, 33.52 and 5.40 emu/cc, and remanent magnetization, Mr∼14.33, 15.50 and 1.10 emu/cc, respectively, are observed for NF, CF and MF. At low temperature measurements of 10 K, the anisotropy of ferromagnetism is observed in these ferrite films. The superparamagnetic/paramagnetic behavior is also confirmed by χ′(T) curves of AC susceptibility by applying DC magnetizing field of 3 Oe. The temperature dependent magnetization measurements show the magnetic phase transition temperature.  相似文献   

18.
Niobium (Nb) doped molybdenum trioxide (MoO3) thin films have been synthesized using spray pyrolysis deposition technique. The structural changes were observed with the help of X-ray diffraction technique. With increasing Nb concentration, the structure of MoO3 undergoes a phase transformation from α-orthorhombic to amorphous with nano-sized grains. The thread like reticulated morphology is converted into spongy like structure at higher Nb concentration (9 at% Nb). It is seen that Nb doping can lead to significant surface morphology changes in MoO3 films. It was found that the coloration efficiency increases with doping concentration. With increasing Nb concentration charge capacity, reversibility and electrochemical stability increases. The improvement is attributed to the amorphous structure of the doped samples that favors easy intercalation and deintercalation processes. Hence, we have successfully demonstrated formation of an adequate host for electrochromic devices with Nb (9 at%) doped MoO3 samples.  相似文献   

19.
Polycrystalline ceramic samples of Bi2Sn2−xTixO7 (x=0.00, 0.2, 0.4, 0.6 and 0.8) have been synthesized by standard high temperature solid state reaction method. The effect of homovalent cation (titanium) substitution on the Sn-site on the structural and electrical properties of the pure Bi2Sn2O7 ceramic have been studied by X-ray diffraction followed by SEM, dielectric and dc conductivity studies. The structural analysis indicates that the increase of titanium contents do not lead to any secondary phase. The frequency and temperature dependent dielectric studies have been carried out. It is found that the Ti doping reduces the material particle size. The size of the particles are strongly influenced by the addition of titanium to the system. The substitution of Ti for Sn ions affected the degree of disorder and modified the dielectric properties leading to more resistive ceramic compounds. The activation energies of all the compounds were calculated using the relation σ=σ0exp(−Ea/kT).  相似文献   

20.
A chemical spray pyrolysis technique for deposition of p-type Mg-doped CuCrO2 transparent oxide semiconductor thin films using metaloorganic precursors is described. As-deposited films contain mixed spinel CuCr2O4 and delafossite CuCrO2 structural phases. Reduction in spinel CuCr2O4 fraction and formation of highly crystalline films with single phase delafossite CuCrO2 structure is realized by annealing at temperatures ?700 °C in argon. A mechanism of synthesis of CuCrO2 films involving precursor decomposition, oxidation and reaction between constituent oxides in the spray deposition process is presented. Post-annealed CuCr0.93Mg0.07O2 thin films show high (?80%) visible transmittance and sharp absorption at band gap energy with direct and indirect optical band gaps 3.11 and 2.58 eV, respectively. Lower (∼450 °C) substrate temperature formed films are amorphous and yield lower direct (2.96 eV) and indirect (2.23 eV) band gaps after crystallization. Electrical conductivity of CuCr0.93 Mg0.07O2 thin films ranged 0.6-1 S cm−1 and hole concentration ∼2×1019 cm−3 determined from Seebeck analysis. Temperature dependence of conductivity exhibit activation energies ∼0.11 eV in 300-470 K and ∼0.23 eV in ?470 K region ascribed to activated conduction and grain boundary trap assisted conduction, respectively. Heterojunction diodes of the structure Au/n-(ZnO)/p-(CuCr0.93Mg0.07O2)/SnO2 (TCO) were fabricated which show potential for transparent wide band gap junction device.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号