首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Polycrystalline AgGaSe2 thin films were deposited by using single crystalline powder of AgGaSe2 grown by vertical Bridgman-Stockbarger technique. Post-annealing effect on the structural and morphological properties of the deposited films were studied by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDXA) measurements. XRD analysis showed that as-grown films were in amorphous structure, whereas annealing between 300 and 600 °C resulted in polycrystalline structure. At low annealing temperature, they were composed of Ag, Ga2Se3, GaSe, and AgGaSe2 phases but with increasing annealing temperature AgGaSe2 was becoming the dominant phase. In the as-grown form, the film surface had large agglomerations of Ag as determined by EDXA analysis and they disappeared because of the triggered segregation of constituent elements with increasing annealing temperature. Detail analyses of chemical composition and bonding nature of the films were carried out by XPS survey. The phases of AgO, Ag, Ag2Se, AgGaSe2, Ga, Ga2O3, Ga2Se3, Se and SeO2 were identified at the surface (or near the surface) of AgGaSe2 thin films depending on the annealing temperature, and considerable changes in the phases were observed.  相似文献   

2.
Polycrystalline CuIn0.5Ga0.5Te2 films were deposited by flash evaporation from ingot prepared by reacting, in stoichiometric proportions, high purity Cu, In, Ga and Te elements in vacuum sealed quartz. The as-obtained films were characterized by X – ray diffraction (XRD), transmission electron microscopy (TEM) combined with energy dispersive spectroscopy (EDS). XRD and TEM results showed that the layer has a chalcopyrite-type structure, predominantly oriented along (112) planes, with lattice parameters a?=?0.61?nm and c?=?1.22?nm. The optical properties in the near - infrared and visible range 600–2400?nm have been studied. The analysis of absorption coefficient yielded an energy gap value of 1.27?eV. Photoluminescence analysis of as-grown sample shows two main emission peaks located at 0.87 and 1.19?eV at 4?K.  相似文献   

3.
The physical, chemical, electrical and optical properties of as-deposited and annealed CdIn2O4 thin films deposited using spray pyrolysis technique at different nozzle-to-substrate distances are reported. These films are characterized by X-ray diffraction, XPS, SEM, PL, Hall effect measurement techniques and optical absorption studies. The average film thickness lies within 600-800 nm range. The X-ray diffraction study shows that films exhibit cubic structure with orientation along (3 1 1) plane. The XPS study reveals that CdIn2O4 films are oxygen deficient. Room temperature PL indicates the presence of green shift with oxygen vacancies. The typical films show very smooth morphology. The best films deposited with optimum nozzle-to-substrate distance (NSD) of 30 cm, has minimum resistivity of 1.3 × 10−3 Ω cm and 2.6 × 10−4 Ω−1 figure of merit. The band gap energy varies from 3.04 to 3.2 eV with change in NSD for annealed films. The effect of NSD as well as the annealing treatment resulted into the improvement of the structural, electrical and optical properties of the studied CdIn2O4 thin films.  相似文献   

4.
Tungsten trioxide (WO3) thin films were prepared by thermal evaporation method onto quartz substrates at room temperature. Effect of annealing temperature (from 200 to 800 °C) to morphology, crystallographic structure and electrical properties were investigated. In order to investigate the temperature dependant resistivity properties of the films dark current–voltage measurements were done at the temperatures of 30, 60, 90, 120 and 150 °C. From the AFM pictures it is seen that the increasing annealing temperature causes an increase in grain sizes. At elevated temperatures the grains combine to each other and thus form continuous and homogenous surfaces. From the XRD patterns it was seen that the as-prepared and annealed films at 200, 300, 310 and 320 °C were amorphous. On the other hand at 330 °C and higher temperatures the films were found as in crystallized structures (monoclinic phase). From the current–voltage measurements it was seen that the contacts areohmic and the current increased with increasing temperatures. From the calculated values it was seen that the produced films shows good semiconducting nature.  相似文献   

5.
N-type Bi2Te2.7Se0.3 thermoelectric thin films with thickness 800 nm have been deposited on glass substrates by flash evaporation method at 473 K. Annealing effects on the thermoelectric properties of Bi2Te2.7Se0.3 thin films were examined in the temperature range 373-573 K. The structures, morphology and chemical composition of the thin films were characterized by X-ray diffraction, field emission scanning electron microscope and energy dispersive X-ray spectroscopy, respectively. Thermoelectric properties of the thin films have been evaluated by measurements of the electrical resistivity and Seebeck coefficient at 300 K. The Hall coefficients were measured at room temperature by the Van der Pauw method. The carrier concentration and mobility were calculated from the Hall coefficient. The films thickness of the annealed samples was measured by ellipsometer. When annealed at 473 K, the electrical resistivity and Seebeck coefficient are 2.7 mΩ cm and −180 μV/K, respectively. The maximum of thermoelectric power factor is enhanced to 12 μW/cm K2.  相似文献   

6.
This work reports unexpected crystallization and segregation behavior of CuIn0.7Ga0.3Se2 (CIGS) thin films deposited on flexible Cu foils by pulsed laser deposition. A composite-type microstructure containing nanometer-scaled CIGS crystallites embedded in amorphous Cu-rich matrix is observed even at the high temperature of 500 °C. The findings are attributed to very fast condensation of the ablated species and random nucleation induced from the amorphous matrix. Cu-rich particulates tend to precipitate on the film surface, and their average size, shape, number density and composition exhibit a strong dependence on the substrate temperature up to 500 °C. The similar crystallization properties of the films on Cu foils and glass substrates are noticeable to the use of Cu foils for flexible solar cells.  相似文献   

7.
Bi2Te3 films were prepared by thermal evaporation technique. X-ray diffraction analysis for as-deposited and annealed films in vacuum at 150 °C were polycrystalline with rhombohedral structure. The crystallite size is found to increase as the film thickness increases and has values in the range 67–162 nm. The optical constants (the refractive index, n, and absorption index, k) were determined using transmittance and reflectance data in the spectral range 2.5–10 μm for Bi2Te3 films with different thicknesses (25–99.5 nm). Both n and k are independent on the film thickness in the investigated range. It was also found that Bi2Te3 is a high refractive index material (n has values of 4.7–8.8 in the wavelength range 2.5–10 μm). The allowed optical transitions were found to be direct optical transitions with energy gap  eV. The optical conductivities σ1 = ƒ() and σ2 = f() show distinct peaks at about 0.13 and 0.3 eV, respectively. These two peaks can be attributed to optical interband transitions.  相似文献   

8.
Ion beam sputtering process was used to deposit n-type fine-grained Bi2Te3 thin films on BK7 glass substrates at room temperature. In order to enhance the thermoelectric properties, thin films are annealed at the temperatures ranging from 100 to 400 °C. X-ray diffraction (XRD) shows that the films have preferred orientations in the c-axis direction. It is confirmed that grain growth and crystallization along the c-axis are enhanced as the annealing temperature increased. However, broad impurity peaks related to some oxygen traces increase when the annealing temperature reached 400 °C. Thermoelectric properties of Bi2Te3 thin films were investigated at room temperature. The Bi2Te3 thin films, including as-deposited, exhibit the Seebeck coefficients of −90 to −168 μV K−1 and the electrical conductivities of 3.92×102-7.20×102 S cm−1 after annealing. The Bi2Te3 film with a maximum power factor of 1.10×10−3 Wm−1 K−2 is achieved when annealed at 300 °C. As a result, both structural and transport properties have been found to be strongly affected by annealing treatment. It was considered that the annealing conditions reduce the number of potential scattering sites at grain boundaries and defects, thus improving the thermoelectric properties.  相似文献   

9.
Thermally evaporated Bi2Te3 thin films were deposited on glass substrates. X-ray diffraction study confirmed that the growned films are polycrystalline in nature having hexagonal structure. The film exhibits preferential orientation along the [0 1 5] direction for the films of all thickness together with other abundant planes [0 1 1 1] and [1 1 0]. Various structural parameters such as lattice constants, crystallite size, strain, and dislocation density have been calculated and they are found to be thickness dependent. The lattice parameters are found to be a=4.38 Å and c=30.40 Å. The grain size of the films increases with thickness as the dislocation density and the microstrain decreases with thickness. The mean bond energy and the average coordination number of Bi2Te3 thin film are found to be 1.72 eV and 2.4, respectively.  相似文献   

10.
The investigation of structure, optical and electrical properties of tin and zinc oxide films on glass substrates by using magnetron sputtering are carried out. X-ray data show the formation of textured tin oxides film during deposition and its transformation to SnO2 polycrystalline film at low temperature (200 C) if the concentration of oxygen in the chamber is high (O2 — 100%, Ar — 0%). Optimal conditions of SnO2 polycrystalline film deposition (pressure of Ar–O2 mixture in chamber — 2.7 Pa, concentration of O2 — 10%) are determined. Low resistivity of as-deposited ZnO film and increasing ZnO crystallite sizes and phase volume at temperatures higher than the melting point of Zn (419.5 C) are explained by formation of conductive Zn and ZnO particle chains and their destruction, respectively.  相似文献   

11.
Sputtering technique has been used for the deposition of AgGaSe2 thin films onto soda-lime glass substrates using sequential layer-by-layer deposition of GaSe and Ag thin films. The analysis of energy dispersive analysis of X-ray (EDXA) indicated a Ga-rich composition for as-grown samples and there was a pronounce effect of post-annealing on chemical composition of AgGaSe2 thin film. X-ray diffraction (XRD) measurements revealed that Ag metallic phase exists in the amorphous AgGaSe2 structure up to annealing temperature 450 °C and then the structure turned to the single phase AgGaSe2 with the preferred orientation along (1 1 2) direction with the annealing temperature at 600 °C. The surface morphology of the samples was analyzed by scanning electron microscopy (SEM) measurements. The structural parameters related to chalcopyrite compounds have been calculated. Optical properties of AgGaSe2 thin films were studied by carrying out transmittance and reflectance measurements in the wavelength range of 325-1100 nm at room temperature. The absorption coefficient and the band gap values for as-grown and annealed samples were evaluated as 1.55 and 1.77 eV, respectively. The crystal-field and spin-orbit splitting levels were resolved. These levels (2.03 and 2.30 eV) were also detected from the photoresponse measurements almost at the same energy values. As a result of the temperature dependent resistivity and mobility measurements in the temperature range of 100-430 K, it was found that the decrease in mobility and the increase in carrier concentration following to the increasing annealing temperature attributed to the structural defects (tetragonal distortion, vacancies and interstitials).  相似文献   

12.
Thin films of CdIn2S4 have been deposited on to stainless steel and fluorine-doped tin oxide (FTO)-coated glass substrates from aqueous acidic bath using an electrodeposition technique. Ethylene diamine tetra-acetic acid (EDTA) disodium salt is used as complexing agent to obtain good-quality deposits by controlling the rate of the reaction. The different preparative parameters like concentration of bath, deposition time, bath temperature, pH of the bath have been optimized by the photoelectrochemical (PEC) technique in order to get good-quality photosensitive material. Different techniques have been used to characterize CdIn2S4 thin films. Optical absorption shows the presence of direct transition with band gap energy 2.17 eV. The X-ray diffraction (XRD) analysis of the as-deposited and annealed films showed the presence of polycrystalline nature. Energy-dispersive analysis by X-ray (EDAX) study for the sample deposited at optimized preparative parameters shows that the In-to-Cd ratio is almost 2 and S-to-Cd ratio is almost 4. Scanning electron microscopy (SEM) for samples deposited at optimized preparative parameters reveals that spherical grains are uniformly distributed over the surface of the substrate indicates the well-defined growth of polycrystalline CdIn2S4 thin film. PEC characterization of the films is carried out by studying photoresponse, spectral response and photovoltaic output characteristics. The fill factor (ff) and power conversion efficiency (η) of the cell are 69 and 2.94%, respectively.  相似文献   

13.
This work describes the physical properties of lead iodide (PbI2) thin films with different thicknesses that were deposited on ultrasonically cleaned glass substrates using a thermal evaporation technique at 5×10-6 torr. The initial material was purified by the zone refining technique under an atmosphere of argon gas. XRD analysis of the material demonstrates that the thin films were preferably oriented along the (001) direction. The size of the crystallites was calculated from the Scherer relation and found to be in the range of ~5–10 nm, with higher values being observed for increasing film thicknesses. The optical energy band gaps were evaluated and determined to belong to direct transitions. Because the band gap increased with decreasing film thickness, a systematic blue shift was observed. The surface morphologies of PbI2 films exhibited a clear increase in grain size with increasing film thickness. The photoluminescence and dc conductivity of the thin films are also discussed.  相似文献   

14.
S.K. Sinha  S.K. Ray 《哲学杂志》2013,93(31):3507-3521
Aluminium-doped (Al = 0–5?wt.%) SnO2 thin films with low-electrical resistivity and high optical transparency have been successfully synthesized by pulsed laser deposition technique at 500 °C. Structural, optical and electrical properties of the as-deposited and post-annealed thin films were investigated. X-ray diffraction patterns suggest that the films transform from crystalline to amorphous state with increasing aluminium content. The root mean square (Rq) surface roughness parameter, determined by atomic force microscopy decreases upon annealing of the as-deposited film. While resistivity of the film is the lowest (9.49 × 10?4 Ω-cm) at a critical doping level of 1?wt.% Al, optical transparency is the highest (nearly 90%) in the as-deposited condition. Temperature dependence of the electrical resistivity suggests that the Mott’s variable range hopping process is the dominant carrier transport mechanism in the lower temperature range (40–135 K) for all the films whereas, thermally activated band conduction mechanism seems to account for conduction in the higher temperature region (200–300 K).  相似文献   

15.
In this paper we report on the effect of annealing on the microsctructural and optoelectronic properties of titanium dioxide (TiO2) thin films prepared using sol-gel method onto silicon (Si) (100) and quartz substrates. The annealing temperatures range from 200 to 1000 °C. The Microstructural properties of annealed thin films were investigated by Thermal gravimetric analyses (TGA), X-ray diffraction (XRD) and Raman Spectroscopy. The surface morphology of the film was examined using Atomic Force Microscopy (AFM) method. The optical properties of TiO2 thin films were characterized using UV-VIS and Spectroscopic ellipsometry. The results have shown that the TiO2 thin films persist in the anatase phase even after annealing at 800 °C. The phase transformation from anatase to rutile occurred only when the films were annealed at 1000 °C. AFM studies revealed nanocrystalline structure where their shape and density depend strongly on the annealing temperatures. The elaborated nanostructured-TiO2 thin films present a high transparency in the visible range. Spectroscopic ellipsometry (SE) study was used to determine the effect of annealing temperature on the thickness and on the optical constant of TiO2 thin films. Spectroscopic ellipsometry and UV-VIS shows that the band gap of TiO2 thin films was found to decrease when the annealing temperature increases. The Anatase phase was find to show higher photocatalytic activity than the rutile one.  相似文献   

16.
FeSe0.5Te0.5 thin films with PbO-type structure are successfully grown on MgO(1 0 0) and LaSrAlO4(0 0 1) substrates from FeSe0.5Te0.5 or FeSe0.5Te0.75 polycrystalline targets by pulsed-laser deposition. The film deposited on the MgO substrate (film thickness ∼ 55 nm) shows superconductivity at 10.6 K (onset) and 9.2 K (zero resistivity). On the other hand, the film deposited on the LaSrAlO4 substrate (film thickness ∼ 250 nm) exhibits superconductivity at 5.4 K (onset) and 2.7 K (zero resistivity). This suggests the strong influence of substrate materials and/or the c-axis length to superconducting properties of FeSe0.5Te0.5 thin films.  相似文献   

17.
TiO2 doped WO3 thin films were deposited onto glass substrates and fluorine doped tin oxide (FTO) coated conducting glass substrates, maintained at 500 °C by pyrolytic decomposition of adequate precursor solution. Equimolar ammonium tungstate ((NH4)2WO4) and titanyl acetyl acetonate (TiAcAc) solutions were mixed together at pH 9 in volume proportions and used as a precursor solution for the deposition of TiO2 doped WO3 thin films. Doping concentrations were varied between 4 and 38%. The effect of TiO2 doping concentration on structural, electrical and optical properties of TiO2 doped WO3 thin films were studied. Values of room temperature electrical resistivity, thermoelectric power and band gap energy (Eg) were estimated. The films with 38% TiO2 doping in WO3 exhibited lowest resistivity, n-type electrical conductivity and improved electrochromic performance among all the samples. The values of thermoelectric power (TEP) were in the range of 23-56 μV/K and the direct band gap energy varied between 2.72 and 2.86 eV.  相似文献   

18.
Zinc sulfide thin films were prepared on glass substrates at room temperature using a chemical bath deposition method. The obtained films were annealed at temperatures ranging from 100 to 500 °C in steps of 100 °C for 1 h. The films were characterized by X-ray diffraction (XRD), Raman spectroscopy, energy dispersive X-ray analysis (EDX), optical absorption spectra, and electrical measurements. X-ray diffraction analysis indicates that the deposited films have an amorphous structure, but after being annealed at 500 °C, they change to slightly polycrystalline. The optical constants such as the refractive index (nr), the extinction coefficient (k), and the real (ε1) and imaginary (ε2) parts of the dielectric constant are calculated depending on the annealing temperature. Aside from the ohmic characteristics of the I-V curve, a nonlinear I-V curve owing to the Schottky contact is also found, and the barrier heights (?bn) for Au/n-ZnS and In/n-ZnS heterojunctions are calculated. The conductivity type was identified by the hot-probe technique.  相似文献   

19.
Glass samples of composition xAl2O3-20PbO-(80−x)B2O3 and xWO3-xAl2O3-20PbO-(80−2x)B2O3 with x varying from 0% to 10% mole fraction are prepared by melt quench technique. The optical band gap decreases (from 3.21 to 2.37 eV) more for WO3-Al2O3-PbO-B2O3 glasses with an addition of WO3 content. The FTIR spectral studies have pointed out the conversion of structural units of BO3 to BO4 and WO4 to WO6 in these glasses. The increase in density from 4.51 to 5.80 g cm−3 for WO3-Al2O3-PbO-B2O3 glasses is observed with an increase in WO3 content. This is observed that the atomic structure changes more with the incorporation of WO3. This is due to the formation of WO6, WO4 and BO4 units.  相似文献   

20.
Nanocrystalline zinc ferrite (ZnFe2O4) is synthesized by high-energy ball-milling after 12 h from a powders mixture of zinc oxide (ZnO) and hematite (α-Fe2O3) with balls to powders mass ratio of 20:1. X-ray diffraction, vibrating sample magnetometer (VSM), the Mössbauer spectrometry and photoluminescence (PL) are used to characterize the samples. Rietveld analysis and VSM measurements show that the powder has an average crystallites size of 10 nm and a ferrimagnetic behavior with a saturation magnetization of 30 emu/g. After annealing at 700 °C, the lattice parameter reduces from 8.448 to 8.427 Å and the sample transforms into a superparamagnetic behavior, which was confirmed as well by the room temperature Mössbauer spectrometry. Different mechanisms to explain the obtained results and the correlation between magnetism and structure are discussed. Finally, the broadband visible emission band is observed in the entire PL spectrum and the estimated energy band gap is about 2.13 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号