首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 397 毫秒
1.
Co2TiSn Heusler alloy films were grown on MgO substrates at the substrate temperature between 200 and 600 °C using atomically controlled alternate deposition and magnetic hyperfine field at the Sn nuclei was measured by the Mössbauer spectroscopy and the nuclear resonant scattering method. The relation between the hyperfine field and the structural disorder estimated by X-ray diffraction measurements was also examined. The results showed that the sample prepared at higher substrate temperature has higher degree of L21 order and larger hyperfine field. For the Co2TiSn film grown at 600 °C, the hyperfine field estimated from the oscillatory pattern of the nuclear resonant time spectra was 6.1 T at room temperature and increased with a decrease of temperature to 7.5, 8.1, and 8.3 T at 200, 100, and 5 K, respectively, which shows that the film prepared by this method and condition has almost the same magnetization value and Curie temperature as bulk samples.  相似文献   

2.
3.
Thermal stability of Ag films in air prepared by thermal evaporation   总被引:1,自引:0,他引:1  
The thermal stability of silver films in air has been studied. Pure Ag films, 250 nm in thickness, were prepared on glass substrates by thermal evaporation process, and subsequently annealed in air for 1 h at temperatures between 200 and 400 °C. The structure and morphology of the samples were investigated by X-ray diffraction, Raman spectra and atomic force microscopy. It is found that the crystallization enhances for the annealed films, and film surface becomes oxidized when annealing temperature is higher than 350 °C. The electrical and optical properties of the films were studied by van der Pauw method and spectrophotometer, respectively. Reflectance drops sharply as Ag films are annealed at temperatures above 250 °C. Film annealed at 250 °C has the maximum surface roughness and the minimum reflectance at 600 nm optical wavelength. Film annealed at 200 °C has the minimum resistivity, and resistivity increases with the increasing of the annealing temperature when temperature is above 200 °C. The results show that both oxidization on film surface and agglomeration of silver film result in infinite of electrical resistivity as the annealing temperature is above 350 °C.  相似文献   

4.
Al, Au, Ti/Al and Ti/Au contacts were prepared on n-GaN and annealed up to 900 °C. The structure, phase and morphology were studied by cross-sectional transmission and scanning electron microscopy as well as by X-ray diffraction (XRD), the electrical behaviour by current-voltage measurements. It was obtained that annealing resulted in interdiffusion, lateral diffusion along the surface, alloying and bowling up of the metal layers. The current-voltage characteristics of as-deposited Al and Ti/Al contacts were linear, while the Au and Ti/Au contacts exhibited rectifying behaviour. Except the Ti/Au contact which became linear, the contacts degraded during heat treatment at 900 °C. The surface of Au and Ti/Au contacts annealed at 900 °C have shown fractal-like structures revealed by scanning electron microscopy. Transmission electron microscopy and XRD investigations of the Ti/Au contact revealed that Au diffused into the n-GaN layer at 900 °C. X-ray diffraction examinations showed, that new Ti2N, Au2Ga and Ga3Ti2 interface phases formed in Ti/Au contact at 900 °C, new Ti2N phase formed in Ti/Al contact at 700 and 900 °C, as well as new AlN interface phase developed in Ti/Al contact at 900 °C.  相似文献   

5.
In this study, ZnO thin films were fabricated using the rf magnetron sputtering method and their piezoelectrical and optical characteristics were investigated for various substrate temperatures. The ZnO thin film has the largest crystallization orientation for the (0 0 2) peak and the smallest FWHM value of 0.56° at a substrate temperature of 200 °C. The surface morphology shows a relatively dense surface structure at 200 °C compared to the other substrate temperatures. The surface roughness shows the smallest of 1.6 nm at a substrate temperature of 200 °C. The piezoelectric constant of the ZnO thin film measured using the pneumatic loading method (PLM) has a maximum value of 11.9 pC/N at a substrate temperature of 200 °C. The transmittance of the ZnO thin film measured using spectrophotometry with various substrate temperatures ranged from 75 to 93% in the visible light region. By fitting the refractive index from the transmittance to the Sellmeir dispersion relation, we can predict the refractive index of the ZnO thin film according to the wavelength. In the visible light range, the refraction index of the ZnO thin film deposited at a substrate temperature of 200 °C is the range of 1.88-2.08.  相似文献   

6.
Zr-N diffusion barriers were deposited on the Si substrates by rf reactive magnetron sputtering under various substrate bias voltages. Cu films were subsequently sputtered onto the Zr-N films by dc pulse magnetron sputtering without breaking vacuum. The Cu/Zr-N/Si specimens were then annealed up to 650 °C in N2 ambient for an hour. The effects of deposition bias on growth rate, film resistivity, microstructure, and diffusion barrier properties of Zr-N films were investigated. An increase in negative substrate bias resulted in a decrease in deposition rate together with a decrease in resistivity. It was found that the sheet resistances of Cu/Zr-N(−200 V)/Si contact system were lower than those of Cu/Zr-N(−50 V)/Si specimens after annealing at 650 °C. Cu/Zr-N(−200 V)/Si contact systems showed better thermal stability so that the Cu3Si phase could not be detected.  相似文献   

7.
Zirconium film was prepared on TiNi alloy by plasma immersion ion implantation and deposition (PIIID) technique to enhance its corrosion resistance and prolong its working lifetime. The atomic force microscopy (AFM) results show that the film was relatively smooth with the root mean square roughness being 9.166 nm. The X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) results indicate that the implant element of Zr was oxidation partialness. The potentiodynamic polarization measurements in the Hank's solution at 37 °C show that the corrosion resistance of the alloy was improved by the Zr coating film and the atomic absorption spectrometry (AAS) tests also indicate that Ni ion concentration released from the substrate in the Hank's solution after the polarization test was reduced greatly, in comparison to the unmodified TiNi alloy sample.  相似文献   

8.
A large enhancement of the Faraday rotation, which is associated with localized surface plasmon resonance (LSPR), was obtained in a sample with Au nanoparticles embedded in a Bi-substituted yttrium iron garnet (Bi:YIG) film. On a quartz substrate, Au nanoparticles were formed by heating an Au thin film, and a Bi:YIG film was then deposited on them. A sample containing the Au nanoparticles produced by 1000 °C heating showed a resonant attenuation with narrower bandwidth in the transmission spectrum than nanoparticles of other samples formed by low-temperature heating. The sharp resonant Faraday rotation angle was 4.4 times larger than the estimated intrinsic Bi:YIG film at the LSPR wavelength; the angular difference was 0.14°. A discrepancy in the bandwidth between the transmission attenuation and the resonant Faraday rotation is discussed.  相似文献   

9.
XPS depth profiles were used to investigate the effects of rapid thermal annealing under varying conditions on the structural, magnetic and optical properties of Ni-doped ZnO thin films. Oxidization of metallic Ni from its metallic state to two-valence oxidation state occurred in the film annealed in air at 600 °C, while reduction of Ni2+ from its two-valence oxidation state to metallic state occurred in the film annealed in Ar at 600 and 800 °C. In addition, there appeared to be significant diffusion of Ni from the bottom to the top surface of the film during annealing in Ar at 800 °C. Both as-deposited and annealed thin films displayed obvious room temperature ferromagnetism (RTFM) which was from metallic Ni, Ni2+ or both with two distinct mechanisms. Furthermore, a significant improvement in saturation magnetization (Ms) in the films was observed after annealing in air (Ms = 0.036 μB/Ni) or Ar (Ms = 0.033 μB/Ni) at 600 °C compared to that in as-deposited film (Ms = 0.017 μB/Ni). An even higher Ms value was observed in the film annealed in Ar at 800 °C (Ms = 0.055 μB/Ni) compared to that at 600 °C mainly due to the diffusion of Ni. The ultraviolet emission of the Ni-doped ZnO thin film was restored during annealing in Ar at 800 °C, which was also attributed to the diffusion of Ni.  相似文献   

10.
ZnO/Si thin films were prepared by rf magnetron sputtering method and some of the samples were treated by rapid thermal annealing (RTA) process at different temperatures ranging from 400 to 800 °C. The effects of RTA treatment on the structural properties were studied by using X-ray diffraction and atomic force microscopy while optical properties were studied by the photoluminescence measurements. It is observed that the ZnO film annealed at 600 °C reveals the strongest UV emission intensity and narrowest full width at half maximum among the temperature ranges studied. The enhanced UV emission from the film annealed at 600 °C is attributed to the improved crystalline quality of ZnO film due to the effective relaxation of residual compressive stress and achieving maximum grain size.  相似文献   

11.
Platinum films were sputter-deposited on polished nickel alloy substrates. The platinum thin films were applied to serve as low-emissivity layers to reflect thermal radiation. The platinum-coated samples were then heated in the air at 600 °C to explore the effects of annealing time on the emissivity of platinum films. The results show that the grain size of the Pt films increased with the increasing annealing time while their dc electrical resistivity decreased. Besides, the IR emissivitiy of the films gradually decreased with the increasing annealing time. Especially, when the annealing time reached 150 h, the average IR emissivity at the wavelength of 3-14 μm was only about 0.1. Moreover, the chemical analysis indicated that the Pt films on Ni-based alloy exhibit a good resistance against oxidation at 600 °C.  相似文献   

12.
The annealing temperature dependence of contact resistance and layer stability of ZrB2/Ti/Au and Ni/Au/ZrB2/Ti/Au Ohmic contacts on p-GaN is reported. The as-deposited contacts are rectifying and transition to Ohmic behavior for annealing at ≥750 °C, a significant improvement in thermal stability compared to the conventional Ni/Au Ohmic contact on p-GaN, which is stable only to <600 °C. A minimum specific contact resistance of ∼2 × 10−3 Ω cm−2 was obtained for the ZrB2/Ti/Au after annealing at 800 °C while for Ni/Au/ZrB2/Ti/Au the minimum value was 10−4 Ω cm−2 at 900 °C. Auger Electron Spectroscopy profiling showed significant Ti, Ni and Zr out diffusion at 750 °C in the Ni/Au/ZrB2/Ti/Au while the Ti and Zr intermix at 900 °C in the ZrB2/Ti/Au. These boride-based contacts show promise for contacts to p-GaN in high temperature applications.  相似文献   

13.
Thin films of eight metals with a thickness of 150 nm were deposited on mica substrates by thermal evaporation at various temperatures in a high vacuum. The surface morphology of the metal films was observed by atomic force microscopy (AFM) and the images were characterized quantitatively by a roughness analysis and a bearing analysis (surface height analysis). The films of Au, Ag, Cu, and Al with the high melting points were prepared at homologous temperatures T/Tm = 0.22-0.32, 0.40, and 0.56. The films of In, Sn, Bi, and Pb with the low melting points were prepared at T/Tm = 0.55-0.70, where T and Tm are the absolute temperatures of the mica substrate and the melting point of the metal, respectively. The surface morphology of these metal films was studied based on a structure zone model. The film surfaces of Au, Ag, and Cu prepared at the low temperatures (T/Tm = 0.22-0.24) consist of small round grains with diameters of 30-60 nm and heights of 2-7 nm. The surface heights of these metal films distribute randomly around the surface height at 0 nm and the morphology is caused by self-shadowing during the deposition. The grain size becomes large due to surface diffusion of adatoms and the film surfaces have individual characteristic morphology and roughnesses as T increases. The surface of the Al film becomes very smooth as T increases and the atomically smooth surface is obtained at T/Tm = 0.56-0.67 (250-350 °C). On the other hand, the atomically smooth surface of the Au film is obtained at T/Tm = 0.56 (473 ± 3 °C). The films of In, Sn, Bi, and Pb prepared at T/Tm = 0.55-0.70 also show the individual characteristic surface morphology.  相似文献   

14.
HgCdTe thin films have been deposited on Si(1 1 1) substrates at different substrate temperatures by pulsed laser deposition (PLD). An Nd:YAG pulsed laser with a wavelength of 1064 nm was used as laser source. The influences of the substrate temperature on the crystalline quality, surface morphology and composition of HgCdTe thin films were characterized by X-ray diffraction (XRD), selected area electron diffraction (SAED), atomic force microscopy (AFM) and energy dispersive X-ray spectroscopy (EDS). The results show that in our experimental conditions, the HgCdTe thin films deposited at 200 °C have the best quality. When the substrate temperature is over 250 °C, the HgCdTe film becomes thermodynamically unstable and the quality of the film is degraded.  相似文献   

15.
We report on Si nanodot formation by chemical vapor deposition (CVD) of ultrathin films and following oxidation. The film growth was carried out by hot-filament assisted CVD of CH3SiH3 and Dy(DPM)3 gas jets at the substrate temperature of 600 °C. The transmission electron microscopy observation and X-ray photoelectron spectroscopy analysis indicated that ∼35 nm Dy-doped amorphous silicon oxycarbide (SiCxOy) films were grown on Si(1 0 0). The Dy concentration was 10-20% throughout the film. By further oxidation at 860 °C, the smooth amorphous film was changed to a rough structure composed of crystalline Si nanodots surrounded by heavily Dy-doped SiO2.  相似文献   

16.
Cerium-doped Gd2SiO5 (GSO:Ce) films have been prepared on (1 1 1) silicon substrates by the sol-gel technique. Annealing was performed in the temperature range from 400 to 1000 °C. X-ray diffraction (XRD), and atomic force microscopy (AFM) were used to investigate the structure and morphology of GSO:Ce films. Results showed that GSO:Ce film starts to crystallize at about 600 °C, GSO:Ce films have a preferential (0 2 1) orientation, as the annealing temperature increase, the (0 2 1) peak intensity increases, the full width of half maximum (FWHM) decreases, and the grain size of GSO:Ce films increases. Emission spectra of GSO:Ce films were measured, results exhibit the characteristic blue emission peak at 427 nm.  相似文献   

17.
Epitaxially grown ZnO thin film on 6H-SiC(0 0 0 1) substrate was prepared by using a spin coating-pyrolysis with a zinc naphthenate precursor. As-deposited film was pyrolyzed at 500 °C for 10 min in air and finally annealed at 800 °C for 30 min in air. In-plane alignment of the film was investigated by X-ray pole-figure analysis. Field emission-scanning electron microscope, scanning probe microscope, and He-Cd laser (325 nm) was used to analyze the surface morphology, the surface roughness and photoluminescence of the films. In the photoluminescence spectra, near-band-edge emission with a broad deep-level emission was observed. The position of the near-band-edge peak was around 3.27 eV.  相似文献   

18.
β-FeSi2 thin films were prepared on Si (1 1 1) substrates by pulsed laser deposition (PLD) with a sintering FeSi2 target and an electrolytic Fe target. The thin films without micron-size droplets were prepared using the electrolytic Fe target; however, the surface without droplets was remarkably rougher using the Fe target than using the FeSi2 target. After deposition at 600 °C and then annealing at 900 °C for 20 h, XRD indicated that the thin film prepared using the Fe target had a poly-axis-orientation, but that prepared using the FeSi2 target had a one-axis-orientation. The PL spectra of the thin films prepared using the FeSi2 and Fe targets at a growth temperature of 600 °C and subsequently annealed at 900 °C for 20 h had A-, B- and C-bands. Moreover, it was found that the main peak at 0.808 eV (A-band) in the PL spectrum of the thin films prepared using the FeSi2 target was the intrinsic luminescence of β-FeSi2 from the dependence of PL peak energy on temperature and excitation power density.  相似文献   

19.
At room temperature deposited Ge films (thickness < 3 nm) homogeneously wet CaF2/Si(1 1 1). The films are crystalline but exhibit granular structure. The grain size decreases with increasing film thickness. The quality of the homogeneous films is improved by annealing up to 200 °C. Ge films break up into islands if higher annealing temperatures are used as demonstrated combining spot profile analysis low energy electron diffraction (SPA-LEED) with auger electron spectroscopy (AES). Annealing up to 600 °C reduces the lateral size of the Ge islands while the surface fraction covered by Ge islands is constant. The CaF2 film is decomposed if higher annealing temperatures are used. This effect is probably due to the formation of GeFx complexes which desorb at these temperatures.  相似文献   

20.
Bi3.99Ti2.97V0.03O12 (BTV) thin films were grown by pulsed laser deposition at substrate temperatures ranging between 650 and 750 °C. The structural phase, and orientation of the deposited films were investigated in order to understand the effect of the deposition parameters on the properties of the BTV films. As the substrate temperature was increased to 700 °C, the films started showing a tendency of assuming a c-axis preferred orientation, while at lower temperatures polycrystalline films were formed. The Au/BTV/Pt capacitor showed an interesting dependence of the remnant polarization (Pr) as well as dc leakage current values on the growth temperature. The film deposited at 675 °C showed a very large 2Pr of 42 μC cm−2, which is the largest for BTV thin films among the values reported so far.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号