首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Zr-Si-N films were deposited on silicon and steel substrates by cathodic vacuum arc with different N2/SiH4 flow rates. The N2/SiH4 flow rates were adjusted at the range from 0 to 12 sccm. The films were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), hardness and wear tests. The structure and the mechanical properties of Zr-Si-N films were compared to those of ZrN films. The results of XRD and XPS showed that Zr-Si-N films consisted of ZrN crystallites and SiNx amorphous phase. With increasing N2/SiH4 flow rates, the orientation of Zr-Si-N films became to a mixture of (1 1 1) and (2 0 0). The column width became smaller, and then appeared to vanish with the increase in N2/SiH4 flow rates. The hardness and Young's modulus of Zr-Si-N films increased with the N2/SiH4 flow rates, reached a maximum value of 36 GPa and 320 GPa at 9 sccm, and then decreased 32 GPa and 305 GPa at 12 sccm, respectively. A low and stable of friction coefficient was obtained for the Zr-Si-N films. Friction coefficient was about 0.1.  相似文献   

2.
E.W. Niu 《Applied Surface Science》2008,254(13):3909-3914
Ti-Zr-N (multi-phase) films were prepared by cathodic vacuum arc technique with different substrate bias (0 to −500 V), using Ti and Zr plasma flows in residual N2 atmosphere. It was found that the microstructure and mechanical properties of the composite films are strongly dependent on the deposition parameters. All the films studied in this paper are composed of ZrN, TiN, and TiZrN ternary phases. The grains change from equiaxial to columnar and exhibit preferred orientation as a function of substrate bias. With the increase of substrate bias the atomic ratio of Ti to Zr elements keeps almost constant, while the N to (Ti + Zr) ratio increases to about 1.1. The composite films present an enhanced nanohardness compared with the binary TiN and ZrN films deposited under the same condition. The film deposited with bias of −300 V possesses the maximum scratch critical load (Lc).  相似文献   

3.
GaSb(0 0 1) was treated with (NH4)2Sx and the evolution of the interfacial chemistry was investigated, in situ, with monochromatic X-ray photoelectron spectroscopy (XPS), following heat treatment and exposure to trimethylaluminum (TMA) and deionized water (DIW) in an atomic layer deposition reactor. Elemental Sb (Sb-Sb bonding) as well as Sb3+ and Sb5+ chemical states were initially observed at the native oxide/GaSb interface, yet these diminished below the XPS detection limit after heating to 300 °C. No evidence of Ga-Ga bonding was observed whereas the Ga1+/Ga-S chemical state was robust and persisted after heat treatment and exposure to TMA/DIW at 300 °C.  相似文献   

4.
张国平  王兴权  吕国华  周澜  黄骏  陈维  杨思泽 《中国物理 B》2013,22(3):35204-035204
ZrN/TiZrN multilayer are deposited by cathodic vacuum arc method with different substrate bias (from 0 to -800 V), using Ti and Zr plasma flows in residual N2 atmosphere, combined with ion bombardment of sample surfaces. The effect of pulsed bias on structure and properties of films is investigated. Microstructure of the coating is analyzed by X-ray diffraction (XRD), and scanning electron microscopy (SEM). Meanwhile, the nanohardness, Young's modulus, and scratch tests are performed. The experimental results show that the films exhibit a nanoscale multilayer structure consisting of TiZrN and ZrN phases. Solid solutions are formed for component TiZrN films. The dominant preferred orientation of TiZrN films is (111) and (220). At pulsed bias of -200 V, the nanohardness and the adhesion strength of ZrN/TiZrN multilayer reach a maximum of 38 GPa, and 78 N, respectively. The ZrN/TiZrN multilayer demonstrates an enhanced nanohardness compared with binary TiN and ZrN films deposited under equivalent conditions.  相似文献   

5.
The focus of this research is the X-ray photoelectron spectroscopy (XPS) analysis of thin films consisting of Au metal clusters embedded in a dielectric matrix of Al-O coatings. The coatings were deposited by co-sputtering an Al + Au target in a reactive atmosphere with Au contents up to 8 at.%. The Al-O matrix was kept amorphous even after annealing at 1000 °C. In the as-deposited films the presence of Au clusters with sizes smaller than 1-2 nm (not detected by XRD) was demonstrated by XPS. With increasing annealing temperature, Au clustering in the dielectric matrix was also confirmed by XPS, in agreement with XRD results.  相似文献   

6.
TiO2/Al2O3/TiO2/Al2O3 multilayer structures were obtained at different oxygen:argon gas ratios of 20:80, 30:70, 50:50 and 60:40 sccm and constant rf power of 200 W using reactive magnetron sputtering. Grain size and elemental distribution in the films were studied from AFM image and XPS spectra respectively. The deposited grain size increased with increasing oxygen:argon gas ratio. The optical band gap, refractive index, extinction coefficient were calculated from UV-vis transmittance and reflectance spectra. It was observed that the value of refractive index, extinction coefficient and band gap increased with increasing oxygen. These variations are due to the defects levels generated by the heterostructure and explained by the PL spectrum. The antireflecting (AR) efficiency of the films was estimated from the reflectance spectra of the films. Broad band antireflecting coating for the visible range was achieved by varying oxygen content in the film. The plasma chemistry controlled the antireflecting property by the interface interdiffusion of atoms during layer transition in multilayer deposition. The in situ investigation of the plasma chemistry was performed using optical emission spectroscopy. The plasma parameters were estimated and correlated with the characteristics of the films.  相似文献   

7.
含铀(U)薄膜在激光惯性约束聚变的实验研究中有重要的用途.研究其在不同气氛下的氧化性能可以为微靶制备、储存及物理实验提供关键的实验数据.通过超高真空磁控溅射技术制备了纯U薄膜及金-铀(Au-U)复合平面膜,将其在大气、高纯氩(Ar)气及超高真空度环境中暴露一段时间后,利用X射线光电子能谱仪结合Ar~+束深度剖析技术考察U层中氧(O)元素分布及价态,分析氧化产物及机理.结果显示,初始状态的U薄膜中未检测到O的存在.Au-U复合薄膜中的微观缺陷减弱了Au防护层的屏蔽效果,使其在3周左右时间内严重氧化,产物为U表面致密的氧化膜及缺陷周围的点状腐蚀物,主要成分均为二氧化铀(UO_2).在高纯Ar气中纯U薄膜仅暴露6 h后表面即被严重氧化,生成厚度不均匀的UO_2.在超高真空度环境下保存12 h后,纯U薄膜表面也发生明显氧化,生成厚度不足1 nm的UO_2.Ar~+束对铀氧化物的刻蚀会因择优溅射效应而使UO_2被还原成非化学计量的UO_(2-x),但这种效应受O含量的影响.  相似文献   

8.
Al2O3 and Al2O3-Al composite coatings were prepared by plasma spraying. Phase composition of powders and as-sprayed coatings was determined by X-ray diffraction (XRD), while optical microscopy (OM) and scanning electron microscopy (SEM) were employed to investigate the morphology of impacted droplets, polished and fractured surface, and the element distribution in terms of wavelength-dispersive spectrometer (WDS). Mechanical properties including microhardness, adhesion and bending strength, fracture toughness and sliding wear rate were evaluated. The results indicated that the addition of Al into Al2O3 was beneficial to decrease the splashing of impinging droplets and to increase the deposition efficiency. The Al2O3-Al composite coating exhibited homogeneously dispersed pores and the co-sprayed Al particles were considered to be distributed in the splat boundary. Compared with Al2O3 coating, the composite coating showed slightly lower hardness, whereas the coexistence of metal Al phase and Al2O3 ceramic phase effectively improved the toughness, strength and wear resistance of coatings.  相似文献   

9.
ZrN/TiZrN multilayers are deposited by using the cathodic vacuum arc method with different substrate bias(from 0 to 800 V),using Ti and Zr plasma flows in residual N 2 atmosphere,combined with ion bombardment of sample surfaces.The effect of pulsed bias on the structure and properties of films is investigated.Microstructure of the coating is analyzed by X-ray diffraction(XRD),and scanning electron microscopy(SEM).In addition,nanohardness,Young’s modulus,and scratch tests are performed.The experimental results show that the films exhibit a nanoscale multilayer structure consisting of TiZrN and ZrN phases.Solid solutions are formed for component TiZrN films.The dominant preferred orientation of TiZrN films is(111) and(220).At a pulsed bias of 200 V,the nanohardness and the adhesion strength of the ZrN/TiZrN multilayer reach a maximum of 38 GPa,and 78 N,respectively.The ZrN/TiZrN multilayer demonstrates an enhanced nanohardness compared with binary TiN and ZrN films deposited under equivalent conditions.  相似文献   

10.
The spinel CoFe2O4 has been synthesized by combustion reaction technique. X-ray photoelectron spectroscopy shows that samples are near-stoichiometric, and that the specimen surface both in the powder and bulk sample is most typically represented by the formula (Co0.4Fe0.6)[Co0.6Fe1.4]O4, where cations in parentheses occupy tetrahedral sites and those within square brackets in octahedral sites. The results demonstrate that most of the iron ions are trivalent, but some Fe2+ may be present in the powder sample. The Co 2p3/2 peak in powder sample composed three peaks with relative intensity of 45%, 40% and 15%, attributes to Co2+ in octahedral sites, tetrahedral sites and Co3+ in octahedral sites. The O 1s spectrum of the bulk sample is composed of two peaks: the main lattice peak at 529.90 eV, and a component at 531.53 eV, which is believed to be intrinsic to the sample surface. However, the vanishing of the O 1s shoulder peak of the powder specimen shows significant signs of decomposition.  相似文献   

11.
Abstract

The performance of cutting tools was examined, involving synthesis of a 10?nm thin film of Aluminum oxide using atomic layer deposition. Characterization of coated and uncoated cutting tools was done by several methods. scanning electron microscopy was used and the images were compared with each other. Chemical characterization was performed by X-ray diffraction and X-ray photoelectron spectroscopy. Coated and uncoated cutting tools were tested with steel material in turning tests. After turning, it was observed that the adhesion effect was reduced to a large extent in turning with coated tool. It was observed that the coating showed stability at high temperatures during cutting and the cutting performance was increased. The main advantage of the coating was that the tools produced were more environmentally friendly, with a longer useful life and they were easier to recycle.  相似文献   

12.
A thin and homogeneous alumina film was prepared by deposition and oxidation of aluminum on a refractory Re(0 0 0 1) substrate under ultrahigh vacuum conditions. X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS) and high-resolution electron-energy-loss spectroscopy (HREELS) demonstrate that the oxide film is long-range ordered, essentially stoichiometric and free from surface hydroxyl groups. The chemisorption and thermal decomposition of Mo(CO)6 on the Al2O3 film were investigated by means of XPS and UPS. Mo(CO)6 adsorbs molecularly on the oxide film at 100 K; however, thermal decomposition of the adsorbate occurs upon annealing at high temperatures. Consequently the metallic molybdenum clusters are deposited on the thin alumina film via complete decarbonylation of Mo(CO)6.  相似文献   

13.
X-ray photoelectron spectroscopy was used to measure the valence-band offset (VBO) of the NiO/ZnO heterojunction grown on quartz substrate by radio frequency (RF) magnetron sputtering. Core levels of Ni 2p and Zn 2p were used to align the VBO of p-NiO/n-ZnO heterojunction. The valence-band offset (ΔEV) is determined to be 1.47 eV. According to the band gap of 3.7 eV for NiO and 3.37 eV for ZnO, the conduction-band offset (ΔEC) in the structure was calculated to be 1.8 eV, and it has a type-II band alignment.  相似文献   

14.
X-ray photoelectron spectroscopic (XPS) studies were carried out on wet-chemically synthesized cubic BaTiO3, Ba0.9Nd0.1TiO3 and BaTi0.9Fe0.1O3−δ powders. The compounds were prepared by hydrothermal and gel to crystallite conversion technique; and phases formed readily at 420 K. The phase purity of the powders was confirmed from X-ray diffractometry. Chemical state and chemical environment of the constituent elements in the compositions were examined by XPS. Ba2+ was found to exist in two different chemical environments in these titanates. The Ti 2p3/2 photoelectron peak in BaTi0.9Fe0.1O3−δ was found to be broadened after Fe3+ substitution. Any resolvable broadening was not observed distinctly in the Ti 2p peak for Ba0.9Nd0.1TiO3, unsintered BaTiO3 and BaTiO3 annealed in hydrogen (8% H2 + Ar) at 1000 K. The prevalence of mixed-valent titanium and iron in BaTi0.9Fe0.1O3−δ composition was evident from the XPS results and was further supported by the enhanced electrical conductivity at 298-550 K for BaTi0.9Fe0.1O3−δ in comparison to BaTiO3 and Ba0.9Nd0.1TiO3. Hydroxyl incorporation was facilitated by substituting Nd3+ in Ba-sublattice. The presence of hydroxyls was observed from the broadening of the O 1s peak in XPS studies of the compounds.  相似文献   

15.
Based on X-ray photoelectron spectroscopy (XPS), influences of different oxidants on band alignment of HfO2 films deposited by atomic layer deposition (ALD) are investigated in this paper. The measured valence band offset (VBO) value for H2O-based HfO2 increases from 3.17 eV to 3.32 eV after annealing, whereas the VBO value for O3-based HfO2 decreases from 3.57 eV to 3.46 eV. The research results indicate that the silicate layer changes in different ways for H2O-based and O3-based HfO2 films after annealing process, which plays a key role in generating the internal electric field formed by the dipoles. The variations of the dipoles at the interface between the HfO2 and SiO2 after annealing may lead the VBO values of H2O-based and O3-based HfO2 to vary in different ways, which is in agreement with the varition of flat band (VFB) voltage.  相似文献   

16.
Plasma sprayed nanostructured coatings were successfully fabricated on a titanium alloy (Ti-6Al-4V) substrate using the as-prepared nanostructured Al2O3-13wt%TiO2 feedstock. A CO2 laser was used to remelt the plasma sprayed coatings. The effects of laser remelting on the phase constituents, microstructure and properties of the ceramic coatings were investigated. The laser remelted coatings (LRmC) possessed a much denser and more homogenous structure and excellent metallurgical bonding to the substrate. The average porosity of the LRmC was reduced to 0.9%, compared with 6.2% of the as-sprayed coatings. The net-like structure in the as-prepared feedstock remained in the coatings before and after laser remelting. The metastable γ-Al2O3 phase in the as-sprayed coatings transformed to stable α-Al2O3 during laser remelting. The LRmC could remain nanostructure. The microhardness of the coatings was enhanced to 1000-1400 HV0.3 after laser remelting, which was much higher than that of the plasma sprayed coatings and 2-3 times higher that of the substrate. Significant decreases in surface roughness were also found in the LRmC.  相似文献   

17.
Al2O3 /TiN double and Al2O3/Cr/TiN triple coatings were produced on stainless steel substrates using plasma-detonation techniques. Investigation of the microstructure and characteristics of the coatings after the preparation was performed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and Auger electron spectroscopy (AES). The corrosion resistance of the coatings was studied in several electrolytic solutions (0.5 M H2SO4, 1 M HCl, 0.75 M NaCl) using electrochemical techniques (open circuit potential, cyclovoltammetry and potentiodynamic polarization). The obtained results showed, in most of the cases, an improvement of the corrosion resistance, except in NaCl solutions. The effect of the controlled thickness of TiN and Cr layers as well as the additional treatment with a high-current electron beam was also investigated. Nuclear reaction analysis (NRA), Rutherford backscattering spectroscopy (RBS) and scanning electron microscopy (SEM) were applied for the characterization of the samples before and after the corrosion experiments.  相似文献   

18.
The impact of the ZrO2/La2O3 film thickness ratio and the post deposition annealing in the temperature range between 400 °C and 600 °C on the electrical properties of ultrathin ZrO2/La2O3 high-k dielectrics grown by atomic layer deposition on (1 0 0) germanium is investigated. As-deposited stacks have a relative dielectric constant of 24 which is increased to a value of 35 after annealing at 500 °C due to the stabilization of tetragonal/cubic ZrO2 phases. This effect depends on the absolute thickness of ZrO2 within the dielectric stack and is limited due to possible interfacial reactions at the oxide/Ge interface. We show that adequate processing leads to very high-k dielectrics with EOT values below 1 nm, leakage current densities in the range of 0.01 A/cm2, and interface trap densities in the range of 2-5 × 1012 eV−1 cm−2.  相似文献   

19.
The aim of this work is to obtain the electroplating parameters for preparation of Ni-W/Al2O3 composite coating with high tungsten content, high micro-hardness and excellent wear resistance by pulse plating procedure. Our results showed that the duty cycle is a dominant parameter for the tungsten content in the coating and the tungsten content increases significantly with increasing duty cycle. The further analysis showed the great influence of tungsten content on micro-hardness of the coating. A maximum micro-hardness of about 859 Hv was obtained in pulse electrodeposited Ni-W/Al2O3 composite with tungsten content of 40 wt.% at a peak current density of 20 A/dm2, a duty cycle of 80%, a pulse frequency of 1000 Hz and a particle loading of 10 g/L alumina in the plating bath. Although the hardness of Ni-W/Al2O3 composite coating was only slightly affected by the alumina content of the deposits prepared in present investigation, the alumina content effect on the tribological characteristic of Ni-W/Al2O3 composite coatings is significant. The friction coefficient was lowered to 0.25 and the wear loss was reduced to 1.05 mg by setting the control factors according to the values mentioned above for obtaining the coating with the highest micro-hardness.  相似文献   

20.
V-W-Nd mixed-oxide films were prepared by pulse-laser deposition (PLD) technique from the targets sintered at different temperatures. X-ray photoelectron spectroscopy (XPS) data indicate that the films fabricated from the targets sintered at low temperature were composed of various mixed valences. Raman spectroscopy shows that V-W-Nd films were composed of the vanadates as NdVO4, and the W6+ doping supplements the formation of vanadate. Atomic force microscopy (AFM) image of the films fabricated from the target sintered at 923 K reveals the average particle size is estimated around 86 nm. The surface morphology of the films roughness shows a dramatic change at 923-943 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号