共查询到20条相似文献,搜索用时 0 毫秒
1.
Effect of flexibility of grafted polymer on the morphology and property of nanosilica/PVC composites 总被引:1,自引:0,他引:1
In this study, poly(methyl methacrylate)-grafted-nanosilica (PMMA-g-silica) and a copolymer of styrene (St), n-butyl acrylate (BA) and acrylic acid (AA)-grafted-nanosilica (PSBA-g-silica) hybrid nanoparticles were prepared by using a heterophase polymerization technique in an aqueous system. The grafted polymers made up approximately 50 wt.% of the resulted hybrid nanoparticles which showed a spherical and well-dispersed morphology. The silica hybrid nanoparticles were subsequently used as fillers in a poly(vinyl chloride) (PVC) matrix to fabricate PVC nanocomposite. Morphology study of PVC nanocomposites revealed that both PMMA- and PSBA-grafted-silica had an adhesive interface between the silica and PVC. The tensile strength and elongation to break were found to be improved significantly in comparison with that of untreated nanosilica/PVC composites. Finally our results clearly demonstrated that the properties (e.g. chain flexibility, composition) of the grafted polymer in the hybrid nanoparticles could significantly affect the dispersion behavior of hybrid nanoparticles in PVC matrix, dynamic mechanical thermal properties and mechanical properties of the resulted PVC composites. 相似文献
2.
3.
Pierre Levitz 《Molecular physics》2019,117(7-8):952-959
The confined dynamics of water molecules inside a pore involves an intermittence between adsorption steps near the interface and surface diffusion and excursions in the pore network. Depending on the strength of the interaction in the layer(s) close to the surface and the dynamical confinement of the distal bulk liquid, exchange dynamics can vary significantly. The average time spent in the surface proximal region (also called the adsorption layer) between a first entry and a consecutive exit allows estimating the level of ‘nanowettablity’ of water. As shown in several seminal works, NMRD is an efficient experimental method to follow such intermittent dynamics close to an interface. In this paper, the intermittent dynamics of a confined fluid inside nanoporous materials is discussed. Special attention is devoted to the interplay between bulk diffusion, adsorption and surface diffusion on curved pore interfaces. Considering the nano or meso length scale confinement of the pore network, an analytical model for calculating the inter-dipolar spin–lattice relaxation dispersion curves is proposed. In the low-frequency regime (50?KHz–100?MHz), this model is successfully compared with numerical simulations performed using a 3D-off lattice reconstruction of Vycor glass. Comparison with experimental data available in the literature is finally discussed. 相似文献
4.
Metallization techniques based on electroless plating are used to coat SiCp/Al composite materials. The directly palladium chloride (PdCl2) solutions in HCl is used to render the surface of such non-conductive substrates catalytically active towards metal deposition in the electroless plating solution. The microstructures of Ni-coated composites provided by scanning electron microscope (SEM) bring light into the palladium activation and electroless coating process. Also, X-ray photoelectron spectroscopy (XPS) and Line-scan have allowed to monitor the chemical and compositional surface modifications of activated and coated SiCp/Al composites, as well as to understand the mechanisms of the catalyst (palladium species) chemisorption on the composites surface and the interaction mechanisms of Ni layer with the SiCp/Al composites. The experimental results show that a nickel-substrate bonding action takes place during plating. Ni atom existing on the surface of the composites can partially obtain electrons from metals Al of the SiCp/Al composites when the substrate is embedded in the Ni layers, that is, the orbital interaction through the mutual overlap of the electronic orbits does exist in the interfacial regions between the coated Ni atoms and composites substrate instead of the mechanical-interlocked form. On the basis of the evidence, a model of electroless Ni deposition on SiCp/Al composites is submitted including Pd activation and Ni deposition processes to describe the formation of catalytic centers and the growth of deposited layer. The deposition model reveals that metal-substrate bond plays an important role in the high adhesion strength between the Ni coatings and the composites. 相似文献
5.
A facile approach was utilized to introduce starch nanocrystals (SNCs) onto sisal fiber (SF) to improve the interfacial adhesion between SF and starch. For this, fibers were treated with alkali and then subjected to cold plasma treatment to increase the accessibility with SNCs, which was confirmed through X-ray photoelectron spectroscopy (XPS). It was found that due to the influence of cold plasma treatment, new functional groups were introduced onto SF. The surface characteristics of SF were examined by Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM). The observed results suggested that SNCs were successfully distributed onto SF. Tensile strength and interfacial shear strength of fibers treated under different conditions were calculated and compared through a two-parameter Weibull model. The highest interfacial shear strength of 3.05 MPa was obtained by Alkali-300 W-SNCs, which indicated an increase of 80.6% than untreated SF. It has also been proved that the starch nanocrystals produced hydrogen bonding and physical interlocking between sisal fiber and starch. Notably, the outcome of this investigation indicates that SNCs may be applied for the fabrication of high performance, environmentally friendly sisal/starch composites for a range of technological applications. 相似文献
6.
In this paper, we present the effects of ultrathin Si interfacial layer on the physical and electrical properties of GaAs MOS capacitors fabricated using RF-sputtered HfAlOx gate dielectric. It is found that HfAlOx/Si/n-GaAs stack exhibits excellent electrical properties with low frequency dispersion (∼4.8%), hysteresis voltage (0.27 V) and interface trap density (1.3 × 1012 eV−1 cm−2). The current density of 3.7 × 10−5 A/cm2 is achieved with an equivalent-oxide-thickness of 1.8 nm at VFB + 1 V for Si-passivated HfAlOx films on n-GaAs. X-ray photoelectron spectroscopy (XPS) analysis shows that the suppression of low-k interfacial layer formation is accomplished with the introduction of ultrathin Si interface control layer (ICL). Thus the introduction of thin layer of Si between HfAlOx dielectrics and GaAs substrate is an effective way to improve the interface quality such as low frequency dispersion, hysteresis voltage and leakage current. Additionally, current conduction mechanism has been studied and the dominant conduction mechanisms are found to be Schottky emission at low to medium electric fields and Poole-Frenkel at high fields and high temperatures under substrate injection. In case of gate injection, the main current conduction at low field is found to be the Schottky emission at high temperatures. 相似文献
7.
Improvement and mechanism of interfacial adhesion in PBO fiber/bismaleimide composite by oxygen plasma treatment 总被引:2,自引:0,他引:2
The improved interfacial adhesion of PBO fiber-reinforced bismaleimide composite by oxygen plasma processing was investigated in this paper. After treatment, the maximum value of interlaminar shear strength was 57.5 MPa, with an increase of 28.9%. The oxygen concentration of the fiber surface increased, as did the surface roughness, resulting in improvement of the surface wettability. The cleavage and rearrangement of surface bonds created new functional groups OCO, NCO and NO, thereby activating the fiber surface. And long-time treatment increased the reaction degree of surface groups while destroyed the newly-created physical structures. The enhancement of adhesion relied primarily on the strengthening of chemical bonding and mechanical interlocking between the fiber and the matrix. The composite rupture planes indicated that the fracture failure shifted from the interface to the matrix or the fiber. 相似文献
8.
9.
Kristian B. Olesen Anne-Sofie Dahl Pedersen Lasse V. Nikolajsen Martin P. Andersson Theis I. Sølling Stephan P. A. Sauer 《Molecular physics》2020,118(18)
The interfacial tension of systems containing water, n-decane, and model naphthenic acids were investigated using a predictive model based on COSMO-RS theory and experimental pendant drop measurements. Five naphthenic acid homologues that are considered to be representative of surfactants inherent to crude oil were dissolved in n-decane at equal concentrations. The interfacial tensions of the five systems at an acid concentration of 1.66?mol% relative to n-decane were experimentally determined to be 27–30?mN/m. The interfacial tensions of the five different acid-decane phases against water were also predicted using density functional theory (DFT) calculations and COSMO-RS theory. The accuracy of the predictions was very good as confirmed through pendant drop measurements of the interfacial tension. The mean-absolute-deviation between experimental and predicted values was 2.6?mN/m thus demonstrating the high predictive power of COSMO-RS theory for calculating the interfacial tension at oil–water interfaces in the presence of surface-active compounds. 相似文献
10.
《Composite Interfaces》2013,20(2-3):281-299
Nowadays, utilisation of biodegradable materials has become necessary in order to maintain global environmental and ecological balance. Fully biodegradable nano 'Green' textile composites have been prepared from cellulose nanofibers reinforced corn starch resin and ramie fabric. Nanofibers having dimensions of approximately 1 μm long and 20–30 nm in diameter are used in the study. The nanofibers were incorporated in corn starch resin via ball mill mixing using ceramic balls. Textile composites were fabricated by pasting the reinforced resin onto the ramie fabric and by hot compression molding technique. Interactions at the fiber–matrix interface and the compatibility between cellulose and corn starch resin molecules will affect the properties of the system. The well dispersed cellulose nanofibers contribute higher interfacial area and good fiber networking within the matrix resin. This will lead to better barrier properties. Sorption characteristics of water, oil and diesel in the textile composites were analysed and the influence of nano fibers and macro fibers on the transport phenomena was investigated. The kinetics of sorption-diffusion process was investigated. Kinetic parameters such as n, k, diffusion coefficient, permeability, solubility parameter, % swelling index, etc., were analysed. The presence of cellulose nanofibers influences the sorption mechanism. The water sorption mechanism in the nanocomposites was found to exhibit slight deviation from Fickian mode. Structure–property relationships of the nanocomposites were evaluated. 相似文献
11.
Effects of argon plasma treatment on the interfacial adhesion of PBO fiber/bismaleimide composite and aging behaviors 总被引:2,自引:0,他引:2
This paper is concerned with the influence of argon plasma on the interfacial adhesion of PBO fiber/bismaleimide composites and aging behaviors. The interlaminar shear strength (ILSS) was greatly increased to 62.3 MPa with an increase of 39.7% after treatment for 7 min at 80 Pa, 200 W. A small amount of O and N atoms was incorporated onto the fiber surface, but the plasma caused C-O bonds to break and generated OC-N groups. The fiber surface roughness increased, contributing much to the wettability. However, long-time treatment excessively destroyed the inherent and newly created structures. The SEM images suggested that the fracture shifted from the interface to the matrix. The modification effects degraded with storage time in the air and the ILSS decreased to approximately 54.0 MPa after 10-30 days. The composite had low water absorption of 2.0 wt% and a high retention of 90% in the ILSS at moisture conditions. 相似文献
12.
13.
José Teixeira 《Pramana》2008,71(4):761-768
The dynamics of liquid water is evaluated by the coherent quasi-elastic scattering at two different momentum transfers, in
order to discriminate hydrogen bond lifetime from molecular dynamics. The results indicate a possible issue for the puzzle
of the behaviour of supercooled water.
相似文献
14.
应用反应力场分子动力学方法, 模拟了水限制在全羟基化二氧化硅晶体表面间的弛豫过程, 研究了基底表面与水形成的界面氢键, 及其对受限水结构和动态特性行为的影响. 当基底表面硅醇固定时, 靠近基底表面水分子中的氧原子与基底表面的氢原子形成强氢键, 这使得靠近表面水分子中的氧原子比对应的氢原子更靠近基底表面, 从而水分子的偶极矩远离表面. 当基底表面硅醇可动时, 靠近基底表面水分子与基底表面原子形成两种强氢键, 一种是水分子中的氧原子与表面的氢原子形成的强氢键, 数量较少, 另一种是水分子中的氢原子与表面的氧原子形成的强氢键, 数量较多, 这使得靠近表面水分子中的氢原子比对应的氧原子更靠近表面, 从而水分子的偶极矩指向表面. 在相同几何间距下, 当基底表面硅醇可动时, 表面的活动性使得几何限制作用减弱, 导致了受限水分层现象没有固定表面限制下的明显. 此外, 固定表面比可动表面与水形成的界面氢键作用较强, 数量较多, 导致了可动表面限制下水的运动更为剧烈. 相似文献
15.
This work examines the properties of polyvinyl alcohol (PVA)/starch film containing glycerol as a plasticizer under exposure to different nitrogen ion fluence. The prepared PVA/starch blend was irradiated with ion fluence from 3 × 1017 to 12 × 1017 ions.cm−2. From FTIR, the ion beam irradiation attack and weakens the C–H bond in PVA/starch blend. From XRD findings, the crystallite size of the blend decreased at 3 × 1017 ions/cm2 while it increased at higher fluence up to 9 × 1017 ions/cm2. This indicates the degradation of the blend at low ion fluence compared to crosslinking at high ion fluence. Also, the optical bandgap of the blend was decreased with an increase in ion fluence. Furthermore, the effect of N+ ions on some optical dispersion parameters is studied. The thermal stability of the PVA/starch blend shows a decrease in thermal stability upon irradiation with 3 × 1017 ions/cm2 compared to higher thermal stability at higher doses up to 9 × 1017 ions/cm2. 相似文献
16.
Petr P. Sharin Sofia P. Yakovleva Susanna N. Makharova Maria I. Vasilieva Vasilii I. Popov 《Composite Interfaces》2019,26(1):53-65
The structural-phase state of the contact zone and the factors that influence on the strength of diamond retention in the diamond carbide composites were determined. Composites were obtained by the new hybrid technology that eliminates the reheating of the metalized coating. The elaborated technology combines the thermal diffusion metallization of a diamond and the sintering by the scheme of self-dosed impregnation in a one-stage technological cycle. By the methods of electron microscopy, X-ray diffraction analysis, and Raman spectroscopy the structural and phase characteristics of the interphase boundary were investigated. The improvement of chemical and mechanical adhesion between the diamond and carbide matrix was obtained. It was shown that the specific productivity of the samples with a metalized diamond component is 39% higher than those without metallization. 相似文献
17.
We present the molecular simulation study of the behaviour of water and sodium chloride solution confined in lizardite asbestos nanotube which is a typical example of hydrophilic confinement. The local structure and orientational and dynamic properties are studied. It is shown that at low enough temperatures there is a well-defined orientational ordering of the water molecules. At high local densities corresponding to the maxima of the density distribution function, the water molecules are oriented parallel to the axis of the tube. It is also shown that the diffusion coefficient drops about two orders of magnitude comparing to the bulk case. The behaviour of sodium chloride solutions is also considered and the formation of double layer is observed. 相似文献
18.
V.M. Gun’ko M.V. Borysenko A. Spanoudaki I.Y. Sulim B.B. Palyanytsya 《Applied Surface Science》2007,253(17):7143-7156
Polydimethylsiloxane (PDMS)/fumed silica A-300 and PDMS/ZrO2/A-300 were studied using adsorption, thermogravimetry, temperature-programmed desorption (TPD) mass-spectrometry, infrared spectroscopy, XRD, and broadband dielectric relaxation spectroscopy. ZrO2 was synthesized on fumed silica with zirconium acetylacetonate in CCl4 at 350 K for 1 h and calcinated at 773 K for 1 h (1-4 reaction cycles). PDMS (5-40 wt.%) was adsorbed onto silica and zirconia/silica from hexane solution and then dried. Grafted zirconia changes the chemistry of the surface (because of its catalytic capability) and the topology of secondary particles (because of occupation of voids in aggregates of primary silica particles by zirconia nanoparticles) responsible for the textural porosity of the powders. Therefore, many properties (such as structural characteristics of the composites, reactions on heating in air and vacuum, interfacial relaxation phenomena, hydrophobicity as a function of treatment temperature, etc.) of PDMS/zirconia/silica strongly differ from those of PDMS/A-300. Broadening of the α-relaxation of PDMS at the interfaces of disperse oxides suggests both weakening of the PDMS-PDMS interaction and strengthening of the PDMS-oxide interaction. 相似文献
19.
Sunjung Kim 《Applied Surface Science》2010,256(13):4157-4161
Interfacial adhesion between an indium tin oxide (ITO)/Ni/Ag/Ni/Au p-electrode, and Au and Ni/Au seeds in vertical GaN-based light emitting diodes (LEDs) was enhanced by O2 plasma cleaning treatment of the Au surface in the p-electrode. However, AES and REELS analyses of the Au surface in the p-electrode detected surface damage to the p-electrode and photoresist (PR) passivation structure from O2 plasma cleaning. W/Ni and Al/Ni adhesion layers were introduced in the Au seed to increase interfacial adhesion between Au seed and untreated PR passivation. Forward leakage current as low as 0.91 nA at 2 V was observed for the vertical LED with the Al/Ni/Au seed, for which adhesion strength to O2 plasma-cleaned Au and untreated PR was 141.2 MPa and 62.8 MPa, respectively. 相似文献
20.
Udo Kaatze 《Journal of Molecular Liquids》2011,162(3):105-112
Broadband dielectric spectra of a variety of aqueous solutions are evaluated as to indications of water that may be considered bound. Static permittivity decrements due to depolarizing internal electric fields, from kinetic depolarization, as well as from dielectric saturation are discussed. The latter effect reflects the preferential orientation of water permanent dipole orientations within strong Coulombic field of small ions, especially multivalent cations. Such water may be considered bound even though rapid rotations around the orientation of the electric dipole moment are definitely possible and also a fast exchange of water molecules between the hydration region and the bulk may take place. Water exhibiting large dielectric relaxation times, as typical for regions with large local concentration of foreign matter, may also be named bound. However, no clear evidence for interaction energies exceeding the hydrogen bond energy of pure water has been found. Rather enhanced relaxation times at low water content reflect the small concentration of hydrogen bonding sites and thus low probability density for the formation of a new hydrogen bond. Potential interferences of the water relaxation with relaxations from other molecules or from ionic structures are mentioned briefly. 相似文献